
        Corresponding Author: marzieh.gholipoor@gmail.comjfea@aihe.ac.ir  

        10.22105/SA.2021.281500.1061      

Licensee System Analytics. This  article is an open access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0). 

 

 
 

 

 

 

 

 

1|Introduction    

Numerous factors, such as pH, temperature, ionic strength, and the concentrations of various medium 

components, influence the efficacy of fermentation processes. The intricate interactions among these factors 

often result in complex effects, necessitating detailed experimentation for accurate characterisation. 

Traditionally, statistical techniques like Response Surface Methodology (RSM) have been employed to manage 
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Abstract 

The Trees Social Relationships (TSR) metaheuristic algorithm is employed to model and optimise a fermentation 

medium for producing the enzyme hydantoinase by Agrobacterium radiobacter. Leveraging experimental data from 

the literature, we developed two neural network models. The neural network models utilised the concentrations of 

four medium components as inputs and provided either hydantoinase or cell concentration as a single output. The 

TSR algorithm was then applied to optimise the input space of the neural network models, identifying the optimal 

settings for maximising enzyme and cell production. This approach showcases the effective integration of neural 

networks with the TSR algorithm, resulting in a robust process modeling and optimisation tool.  
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  these interactions, minimising the number of exhaustive experiments required. RSM aims to identify and 

optimise critical factors to determine the conditions that maximise the response, product yield or productivity. 

Through statistical experimental designs, RSM develops empirical models that relate a dependent variable 

(response) to independent variables (factors) [1]. The efficacy of RSM, encompassing a suite of statistical and 

regression techniques, is well-documented. 

In recent years, a growing interest has been in leveraging non-statistical techniques, particularly Artificial 

Intelligence (AI), for optimising fermentation processes. Among the various AI techniques, Trees Social 

Relationships (TSRs) algorithms have gained significant attention as robust stochastic search and optimisation 

methods [2], [3]. Unlike statistical designs and empirical models, TSR algorithms can optimise fermentation 

conditions independently. This approach has been successfully applied to optimise the production of polyols, 

xylitols, and culture mediums for fed-batch insect cell cultures. Despite their effectiveness, TSR algorithms 

do not retain the generated information throughout the optimisation stages. In contrast, RSM provides 

empirical models that mathematically describe the relationships between process variables, which can be used 

both for optimisation and for analysing the sensitivity of the model output to each input variable. Typically, 

quadratic polynomials are the preferred approximating functions in RSM model building [2]-[4]. 

From a process modeling perspective, neural networks offer a mathematical alternative to quadratic 

polynomials for representing data from statistically designed experiments. Neural networks are universal 

function approximators capable of approximating functions to any desired degree of accuracy. This capacity 

makes them attractive as empirical models in response surface analysis. Optimising the input space of a neural 

network model can be effectively achieved using the TSR metaheuristic algorithm. A distinct advantage of 

the TSR algorithm is its independence from the continuity or differentiability of the objective function [5]. 

Recent studies have explored using neural networks and metaheuristic algorithms to model and optimise 

gluconic acid production from glucose. However, comparisons with RSM were absent due to the non-

statistical design of the experiments. It has been demonstrated that neural networks can outperform quadratic 

polynomials in modeling fermentation processes, yet the networks were not utilised in the optimisation phase 

[6]. 

With the increasing consumption of fossil fuels and related environmental issues, there is an urgent need to 

find biological substitutes for traditional petrochemical products through green biological manufacturing. 

Over the decades, microorganisms have been used as 'mini-factories' in biomanufacturing to leverage their 

diverse metabolic pathways and ability to transform a wide range of renewable raw materials into value-added 

compounds through fermentation. However, the use of wild-type microorganisms in industrial production is 

usually hindered by factors such as substrate and product toxicity [7]. Modern biotechnologies, such as genetic 

engineering and synthetic biology, enable the engineering of more powerful mini-factories. Successful 

examples include Escherichia coli, producing insulin and carotene, Saccharomyces cerevisiae, producing 

geraniol; Yarrowia lipolytica, producing N-acetylneuraminic acid and Bacillus subtilis, producing hyaluronic 

acid. 

Nonetheless, the construction of mini-factories is not the ultimate goal of biomanufacturing; instead, 

biological fermentation and industrial production are the end goals, which present significant challenges. 

Engineered strains may not perform optimally in actual fermentation processes due to the lack of suitable 

fermentation strategies. Therefore, optimising fermentation parameters, such as medium composition and 

extracellular conditions, is crucial for efficiently operating these mini-factories, which is essential for 

fermentation [8], [9]. 

In practice, mathematical modeling provides rich insights that can assist in optimising fermentation processes. 

As approximations of reality, mathematical models can clearly represent fermentation processes, whose 

intrinsic complexity exceeds intuitive understanding, thus offering indispensable insight into designing, 

controlling, and optimising the process, as well as minimising unnecessary experimentation. However, 

modeling the fermentation process is challenging because each cell in the bioreactor can be viewed as a 

subsystem of metabolic and signaling networks. For fermentation problems, three modeling approaches are 
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generally used: mechanistic modeling, data-driven modeling, and hybrid modeling. Mechanistic modeling 

derives models from prior knowledge using notable and acknowledged equations, extracting valuable 

information from raw data and providing insight into underlying mechanisms. Kinetics and Constraint-Based 

Modeling (CBM) are the primary mechanical approaches for analysing microbial growth and metabolism. 

In contrast, data-driven approaches obtain models by analysing and fitting existing data, known as black-box 

models, which cannot provide information about basic mechanisms without considering internal structures 

and phenomena [10], [11]. Machine Learning (ML) is a commonly used data-driven approach. With the 

advancement of omics technology and various analytical techniques, the datasets available for fermentation 

process modeling are rapidly growing. ML is increasingly used to interpret large-scale datasets for deeper 

analysis and optimisation. As a result, hybrid modeling has emerged, integrating mechanical and data-driven 

approaches. Recent comprehensive reviews indicate hybrid models hold promising prospects for the field 

[12], [13]. 

In addition to the complexity of microbial metabolic behavior, fermentation systems possess complex 

hierarchical structures comprising microorganisms and their fermentation environment, influenced by 

upstream and downstream operating conditions. During industrialisation, the expansion of bioreactor 

volumes and changes in shape alter the fermentation environment, leading to the failure of laboratory-

developed fermentation strategies. Thus, as biological fermentation transitions from laboratory to industrial 

production, it is crucial to incorporate environmental changes in fermentation into biological models to 

elucidate the effects of mixing and hydrodynamics. This goal can be achieved by coupling biological models 

with Computational Fluid Dynamics (CFD) models [14]. 

This paper overviews different mathematical modeling methods and their applications in biological 

fermentation processes. We first introduce the primary forms of mechanistic models that describe microbial 

metabolism using kinetic and CBM modeling methods and their applications in biological fermentation 

processes. Next, we discuss approaches to building data-driven ML models and the synergistic effects of 

combining CBM and ML [9], [15]. Finally, we highlight the coupling of biological models with CFD models, 

facilitating the formation of model-based integrated tools for predicting bioreactor scale-up and culture 

behavior during model-assisted bioreactor operation design. 

In this study, we explore the application of neural networks combined with the TSR algorithm to achieve 

objectives akin to RSMs. We present a comparative analysis of this hybrid approach against the standard RSM 

approach, focusing on their effectiveness in predicting optimal conditions for a fermentation process [16]. 

2|Trees Social Relationships Algorithm 

The TSR algorithm methodology is designed to leverage the social dynamics observed in tree communities 

to solve complex optimisation problems. Inspired by trees' interdependent and cooperative behaviors, TSR 

models the sharing of resources and information in a simulated environment. This novel approach integrates 

elements of competition and cooperation, which are crucial for the adaptation and survival of tree species in 

natural ecosystems [2]. The TSR algorithm begins with an initialisation phase where a population of trees is 

generated. Each tree represents a potential solution to the optimisation problem and is characterised by its 

position in the solution space. The fitness of each tree is evaluated based on the objective function of the 

problem, determining the quality of the solution it represents [2], [5]. In the subsequent phases, the algorithm 

simulates the interactions among trees, including resource sharing, competitive exclusion, and cooperative 

enhancement. These interactions are inspired by the natural behaviors of trees, such as root communication, 

canopy competition, and symbiotic relationships with other organisms. 

2.1|Resource Sharing 

Trees in a forest share resources through their root systems, facilitating mutual growth and survival. In TSR, 

this is modeled by allowing trees to exchange information about their positions and fitness values. Trees with 
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  higher fitness values share their advantageous traits with neighboring trees, promoting the spread of beneficial 

characteristics throughout the population. 

2.2|Competitive Exclusion 

In natural ecosystems, trees compete for sunlight, water, and nutrients. This competition drives the selection 

of the fittest individuals. Similarly, trees with lower fitness values are gradually excluded from the population 

in TSR, ensuring that only the most promising solutions are retained. This selective pressure helps to converge 

the population towards optimal solutions. 

2.3|Cooperative Enhancement 

Trees often form symbiotic relationships with other organisms, such as mycorrhizal fungi, to enhance their 

growth and resilience. TSR incorporates this concept by allowing trees to form temporary alliances and 

pooling their resources and information to explore new regions of the solution space more effectively. This 

cooperative behavior increases the diversity of solutions and prevents premature convergence [2], [6]. 

 

Fig. 1. Flowchart of the TSR. 

The algorithm iterates through these phases, continuously updating the population of trees based on their 

interactions. The balance between competition and cooperation is carefully maintained to ensure a thorough 

exploration of the solution space while gradually refining the population towards optimal solutions. The TSR 
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algorithm also includes mechanisms to handle various constraints and complexities typical of real-world 

optimisation problems. For example, it can incorporate boundary conditions, handle discrete and continuous 

variables, and adapt to dynamic changes in the problem environment. Throughout its execution, the TSR 

algorithm employs a feedback mechanism to monitor its performance and adjust its parameters dynamically. 

This self-adaptive feature enhances the algorithm's robustness and efficiency, making it suitable for a wide 

range of optimisation tasks. In conclusion, the TSR algorithm offers a unique and biologically inspired 

approach to optimisation. By mimicking trees' social interactions and adaptive behaviors, TSR provides a 

powerful and flexible tool for solving complex optimisation problems. Its ability to balance exploration and 

exploitation, along with its adaptability to diverse problem settings, underscores its potential as a valuable 

addition to the field of metaheuristic algorithms [2], [6]. The flowchart of the TSR method is shown in Fig. 1. 

3|Optimising Enzyme Production with RSM and Quadratic 

Regression 

RSM integrates statistical experimental designs with empirical model construction through regression to 

optimise processes or products efficiently. It enables comprehensive insights about a process from a limited 

number of experiments, thereby minimising costs. An empirical model, typically a quadratic polynomial, is 

employed to establish relationships between process responses and independent variables: 

Here, y denote the predicted response or outcome variable, x represents independent variablesx represents 

independent variables, b0, bi, bij are Regression coefficients, b0 represents the intercept or constant term and 

e stands for the random error component, accounting for the variability not explained by the model. 

∑bixi. The sum of the linear terms where bibi are the coefficients for the independent variables xi. 

∑bixi2. The sum of the squared terms where bi are the coefficients for the squared independent variables 

xi2. 

∑bijxixj. The sum of the interaction terms where bij are the coefficients for the interaction between pairs of 

independent variables xi and xj [14], [16]. 

To pinpoint near-optimal points, practitioners typically calculate derivatives of the polynomial Equation or 

visualise the model's response using contour plots. Various commercial software packages facilitate the 

application of such quadratic models for optimising processes. 

For instance, researchers applied this approach to optimise the production of hydantoinase by Agrobacterium 

radiobacter using a central composite design. They varied concentrations of four medium components (x1, 

x2, x3, and x4) within defined ranges. The experimental design levels and concentration ranges of the four 

independent variables are listed in Table 1. The resulting regression equations (see Table 2) successfully 

correlated with the enzyme and biomass concentrations (y1 and y2). The goodness of fit, as assessed by the 

coefficient of determination (R2), indicated a robust correlation between observed and predicted values [8], 

[15]. 

Contour plots derived from these regression equations revealed local optima within the experimental domain, 

identifying conditions optimal for maximising enzyme or biomass production. This methodology effectively 

identified specific combinations of the independent variables that led to maximum enzyme and biomass 

concentrations, further validated by alternative optimisation strategies such as neural network-TSR algorithm 

approaches (see Table 3). 

This methodological approach underscores RSM's capability to systematically optimise processes by 

leveraging empirical modeling and statistical insights from experimental data [17]. 

y = b0 + ∑ bi xi + ∑ bi xi
2 + ∑ bij xixj + e. (1) 
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  Table 1. Independent variables used for the experimental step. 

Variables (𝐠𝐥−𝟏) 
Coded level 𝐌𝐨𝐥𝐚𝐬𝐬𝐞𝐬(𝐱𝟏) 𝐍𝐇𝟒𝐍𝐇𝐎𝟑(𝐱𝟐) 𝐍𝐚𝐇𝟐𝐏𝐎𝟒(𝐱𝟑) 𝐌𝐧𝐂𝐥𝟐(𝐱𝟒) 
-2 7.5 0.75 7.5 0 
-1 10 1 10 0.025 
0 12.5 1.25 12.5 0.05 
1 15 1.5 15 0.075 
2 17.5 1.75 17.5 0.1 

 

4|Neural Network-TSR Approach 

A neural network is a computational model that emulates the brain's neural architecture and learning 

processes. It captures the brain’s learning ability by representing interconnected neurons and their synaptic 

weights. Neural networks function through a data-driven methodology, requiring substantial datasets for 

effective modeling. They consist of layers of interconnected processing units called neurons, structured in an 

input layer, one or more hidden layers, and an output layer [2], [14]. 

In a neural network, neurons in the hidden layers are crucial as they facilitate the network’s ability to learn 

complex relationships between inputs and outputs by adjusting synaptic weights. The inputs to each neuron 

in the hidden and output layers are aggregated and transformed via an activation function, commonly the 

sigmoid function. Training the network involves determining these adjustable weights through an iterative 

process, often using the backpropagation algorithm. This algorithm minimises the error between the 

network’s predictions and actual outputs by iteratively adjusting weights to reduce discrepancies. The process 

continues until the error satisfies a predetermined threshold, effectively fitting a multi-dimensional curve to 

the data [14]. 

For our study, two neural network models were developed to simulate fermentation. Each model comprised 

a single output neuron (for hydantoinase or biomass concentration) and four input neurons representing the 

concentrations of four medium components. 

Optimising neural network models with conventional techniques, such as gradient-based methods, is 

challenging due to the difficulty of computing model derivatives. The TSR metaheuristic algorithm provides 

a novel and efficient alternative. Inspired by the social interactions and relationships among trees in a forest, 

TSR utilises these natural strategies to navigate the solution space effectively. 

The TSR algorithm begins by initialising a population of potential solutions analogous to a forest of trees. 

Each solution, or tree, is evaluated for its fitness using an objective function - in this case, the neural network 

models. TSR mimics tree behaviors such as seed dispersion, growth, and competition to explore the solution 

space. The algorithm identifies promising regions through these interactions and refines the search for optimal 

solutions. This process continues iteratively, balancing exploration and exploitation until an optimal or near-

optimal solution is found [2], [14]. 

The neural network models and TSR algorithm utilised in this study were implemented in MATLAB and 

executed within a Microsoft Windows environment. This combination leverages the strengths of neural 

networks in modeling complex data relationships and the optimisation power of the TSR algorithm to 

enhance the performance and accuracy of fermentation process simulations [2], [12]. 

Table 2. Regression equations for dependent variables. 

Dependent                                           Best fitness 
variables 

𝐑𝟐 

Hydantoinase (Uml−1)y1 = 34.58 + 1.139x1 − 0.409x2 + 1.126x3 + 1.825x4 − 2.962x1
2 −

1.328x2
2 − 2.356𝑥3

2 − 2.308x4
2 + 1.092x1x2 − 0.365x1x3 − 0.739x1x4 + 0.552x2x3 − 2.033x2x4 −

1.655x3x4.  

0.799 
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Biomass (mg ml−1) y2 = 1.69 + 0.02x1 − 0.48x2 − 0.055x3 − 0.045x4 − 0.144x1
2 − 0.102x2

2 −
 0.11x3

2 − 0.069x4
2 + 0.066x1x2 + 0.007x1x3 + 0.013x1x4 + 0.552x2x3 − 0.042x2x4 − 1.655x3x4.  

0.812 

 

Table 3. Maximum hydantoinase and biomass identified by quadratic polynomial and neural network 

models and the optimum input sets that result in the maximum output values. 

5|Results and Discussion 

5.1|Neural Network Modeling 

The initial step in neural network modeling involves designing the network's topology. Various design 

parameters influence performance, including the activation function, training algorithm, learning rate, 

momentum, number of hidden layers, neurons per hidden layer, initial weights, and training duration. Feed-

forward neural networks with a single hidden layer of sufficient neurons are known to approximate any 

continuous nonlinear function accurately. However, selecting other design parameters often involves 

empirical rules and trial and error, as network topology is typically problem-specific. 

In this study, we configured two neural networks with a 4-6-1 structure (four input neurons, six neurons in 

one hidden layer, and one output neuron) after preliminary experimentation. To prevent overtraining, the 

dataset of 30 experimental runs was divided into a training set (27 runs) and a validation set (3 runs). The 

training set optimised the network weights, while the validation set evaluated predictive capabilities. Training 

data spanned the lower and upper bounds of the output neurons (y1 and y2). 

Fig. 2 and Fig. 3 depict the network-calculated hydantoinase and biomass concentrations for both training and 

validation data, compared to experimental data. Solid circles represent network-trained outputs, while open 

circles denote network-predicted outputs for validation set inputs. The neural networks fit the training data 

well and accurately predicted validation data. Polynomial regression equations (Eq. (2) and Eq. (3)), shown as 

triangles in Fig. 2 and Fig. 3, provided less accurate predictions, highlighting neural networks' superior 

modeling capability in response surface analysis. 

 

5.2|Optimisation by TSR Algorithm 

It can be optimised once a robust neural network model is established across the independent variables' 

ranges. For the fermentation example, we used the TSR algorithm to optimise the input space of the neural 

network models and determine optimum hydantoinase and biomass concentrations. 

One suggestion for improving performance is to use fuzzy logic, specifically a fuzzy-split range control system 

for the fermentation process. Fuzzy logic emulates human reasoning and translates this thought process into 

mathematical rules for problem-solving and decision-making. Unlike the precise and numerical nature of 

computer logic, the rules and linguistic variables used in human decision-making are often vague. These 

linguistic terms are mathematically represented as membership functions [18]. 

The TSR algorithm's performance is influenced by design parameters such as initial population size, parent 

selection, seed dispersion rate, growth rate, and number of generations. Experimentation showed that the 

TSR algorithm is robust to parameter variations, with population size and number of generations significantly 

  Independent variables (𝐠𝐥−𝟏) 

Model Dependent 
Variable 

𝐌𝐨𝐥𝐚𝐬𝐬𝐞𝐬(𝐱𝟏) 𝐍𝐇𝟒𝐍𝐇𝐎𝟑(𝐱𝟐) 𝐍𝐚𝐇𝟐𝐏𝐎𝟒(𝐱𝟑) 𝐌𝐧𝐂𝐥𝟐(𝐱𝟒) 

Quadratic polynomial y1 = 35.39 12.36 1.04 12.14 0.07 

Neural network y1 = 39.29 11.95 0.75 15.99 0.08 

Quadratic polynomial y2 = 1.69 12.75 1.3 14.23 0.04 

Neural network y2 = 1.92 14.76 1.53 12.25 0.02 
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  affecting performance. Using a population of 50-100, neural network responses converged to optimal values 

within 200-500 generations. 

Table 3 presents the results, including input conditions yielding maximum output values. The neural network 

models identified maximum achievable hydantoinase and cell concentrations of 39.29 U ml−1 and 1.92 mg 

ml−1, respectively, 11-14% higher than those identified by polynomial equations. This difference underscores 

the importance of accurate response surface approximation for optimisation. 

Different optimum conditions arose from models with varying accuracy. To verify that differences were not 

due to the optimisation method, we used TSR to optimise polynomial equations, obtaining similar results to 

derivative calculations of Eq. (1) and Eq. (2). This consistency confirms that polynomial models' optimal 

conditions are not dependent on the optimisation method. 

Quadratic polynomial models are frequently used for fermentation optimisation but may lack accuracy. Our 

study demonstrates that higher-order polynomials or neural networks are necessary for accurate response 

surface modeling, preventing suboptimal conditions. Accurate model selection in RSM is crucial for effective 

process optimization. 

 

Fig. 2. Comparison of hydantoinase production predicted by the neural 

network and Eq. (2) with actual hydantoinase production. 
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Fig. 3. Comparison of biomass production predicted by the neural 

network and Eq. (3) with actual biomass production. 

 

Conclusion 

Empirical model building in the standard RSM approach often involves fitting quadratic polynomials to data 

derived from statistically designed experiments. However, quadratic polynomials may not always adequately 

approximate the true response surface of a process. This study found that neural networks better fit 

experimental data than conventional quadratic polynomials. 

The input space of a neural network model can be effectively optimised using the TSR algorithm, which does 

not require the objective function to be continuous or differentiable. The hybrid neural network-TSR 

algorithm approach described in this work offers a viable alternative to the standard RSM approach for 

modeling and optimising fermentation processes. This integration demonstrates improved accuracy and 

optimisation capability, making it a promising method for complex empirical modeling tasks. 
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