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1|Introduction    

Efficient scheduling and resource management lie at the heart of every successful construction project. 

Regardless of scale, a construction project is an intricate interplay of interdependent activities, human 

resources, machinery, materials, and time. Aligning these components under strict constraints is a balancing 

act that determines whether a project is delivered on time and within budget, or spirals into delays and cost 
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overruns. Traditional approaches to project scheduling, most notably the Critical Path Method (CPM) and 

the Program Evaluation and Review Technique (PERT), have long provided structured methods for defining 

dependencies and estimating project durations. However, while these methods establish feasible schedules, 

they are ill-equipped to handle the dynamic variability of resource demands that occurs throughout a project’s 

lifecycle [1]. 

In practice, construction resource utilization rarely follows a smooth curve. Instead, resource usage fluctuates 

dramatically due to concurrent activities, varying work rates, weather conditions, and unforeseen site 

challenges. These fluctuations manifest as peak periods of resource congestion, followed by idle intervals in 

which workforce and equipment remain underused. Such an imbalance not only increases operational costs 

but also reduces productivity and overall project efficiency. A schedule that is optimal in terms of time can 

still be inefficient if its resource profile is unstable. Resource levelling, smoothing out resource consumption 

while maintaining project deadlines, has therefore become an essential optimization objective alongside time 

and cost minimization [2]. 

Traditional deterministic methods can optimize project duration but fail to balance the dynamic nature of 

real-world resource usage. The challenge arises because resource allocation and levelling constitute a 

nonlinear, multi-objective, and combinatorial optimization problem. Finding the best sequence of activities 

and corresponding resource assignments involves an exponentially growing search space that quickly exceeds 

the capability of exact mathematical programming or heuristic priority-rule methods, especially as project 

complexity increases. As a result, researchers and engineers have increasingly turned to metaheuristic 

optimization, a family of algorithms inspired by natural and social processes that can efficiently explore vast, 

complex solution spaces [3]. 

Metaheuristics such as the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), Simulated Annealing (SA), and the Imperialist Competitive Algorithm (ICA) have each 

demonstrated value in solving construction scheduling and resource levelling problems. These algorithms 

emulate principles of evolution, collective intelligence, physical annealing, or socio-political competition to 

search for near-optimal solutions. They excel in exploring nonlinear and multi-modal spaces without requiring 

gradient information or convex assumptions. In construction management, GA has been widely applied to 

optimize project duration and smooth resource distribution through evolutionary crossover and mutation. 

PSO, inspired by swarm intelligence, efficiently balances global and local search dynamics, making it useful 

for fine-tuning schedules under uncertain conditions. ACO adapts collective path-finding behavior to 

sequencing tasks and identifying optimal precedence relationships. SA mimics the gradual cooling of metals 

to escape local minima by probabilistically accepting sub-optimal solutions. At the same time, ICA exploits 

imperialistic competition and assimilation mechanisms to guide populations toward global optima [4]. 

While each of these algorithms is powerful, they also exhibit inherent weaknesses. GA can lose diversity and 

converge prematurely. PSO often sacrifices global exploration in exchange for faster convergence. ACO’s 

performance is susceptible to pheromone parameters and tends to degrade in high-dimensional search spaces. 

SA’s stochastic acceptance mechanism can lead to slow convergence, and ICA, though globally oriented, 

requires heavy computation to maintain multiple empires and colonies. All share one limitation: they employ 

fixed search strategies. Once initialized, their behavior is determined by static parameter settings, regardless 

of how the optimization landscape evolves. In dynamic, constraint-rich environments such as construction 

scheduling, where the problem's nature may change as constraints interact, static search mechanisms can 

become inefficient, unbalanced, or trapped in local optima [2]. 

This limitation has prompted a new wave of research that goes beyond traditional metaheuristics: hyper-

heuristic optimization. A hyper-heuristic operates at a higher level of abstraction than a metaheuristic. Instead 

of being a single algorithm that directly searches the solution space, a hyper-heuristic manages and coordinates 

a collection of metaheuristics or low-level heuristics. It learns which algorithm performs best under specific 

circumstances and dynamically switches among them during the optimization process. Essentially, hyper-



Joorbonyan and Lamtar-Gholipoor | Metaheur. Algor. Appl. 2(1) (2025) 63-81 

 

65

heuristics shift the question from “how can we find a good solution?” to “which algorithm should we use 

right now to find a good solution?” [1], [2]. 

This conceptual shift introduces a new degree of adaptability. By monitoring the performance of constituent 

algorithms in real time, a hyper-heuristic can allocate computational effort intelligently, favoring exploration 

when diversity is needed and switching to exploitation when convergence is near. It can also mitigate the 

weaknesses of individual metaheuristics by combining their complementary strengths. For example, PSO and 

ACO are strong in exploration but may lack fine-grained exploitation; GA and SA, on the other hand, excel 

at refining solutions once promising regions have been identified. A hyper-heuristic that can blend these 

behaviors dynamically can outperform any single algorithm operating in isolation [5]. 

Building upon this principle, this study introduces the World Hyper-Heuristic (WHH) algorithm, an adaptive 

optimization framework that integrates multiple metaheuristics under a Reinforcement Learning (RL)-based 

control mechanism. In WHH, a reinforcement learning agent continuously observes the performance of each 

underlying metaheuristic and learns a policy that maximizes long-term optimization rewards. The agent 

dynamically selects the following algorithm to apply based on historical improvement trends, convergence 

rate, and diversity indicators. This approach transforms the optimization process into a self-adaptive system 

that balances exploration and exploitation at every iteration [6]. 

The term “world” in WHH signifies the algorithm’s holistic perspective: it treats each metaheuristic as a 

nation or entity within a global ecosystem of search strategies. The reinforcement learning controller acts as 

a global governor evaluating the progress of each entity, rewarding those that contribute effectively to solution 

improvement, and discouraging unproductive behaviors. In this way, WHH orchestrates a cooperative yet 

competitive environment among algorithms, analogous to natural or social systems where different agents 

with unique strategies coexist and evolve collectively [7]. 

The key advantage of WHH lies in its adaptivity and self-organization. Unlike static hybrid models that 

combine metaheuristics in fixed proportions or sequences, WHH makes decisions based on performance 

feedback. It can allocate more iterations to PSO during the early stages of exploration, then gradually shift 

toward GA or SA for refinement as convergence nears. If stagnation is detected, it can reintroduce exploratory 

behavior by switching to ACO or ICA. This flexible control mechanism allows WHH to maintain search 

diversity while accelerating convergence, solving one of the long-standing dilemmas in evolutionary 

computation [8]. 

In construction resource allocation and levelling, this adaptability is crucial. The optimization landscape is 

highly irregular, characterized by numerous local minima arising from precedence constraints, discrete 

resource units, and time-window restrictions. Static algorithms often require extensive parameter tuning for 

each project instance. WHH, by contrast, learns an internal policy that generalizes across different project 

scales and constraint sets, reducing dependency on manual parameter adjustment [1]. 

Furthermore, construction projects rarely involve a single optimization objective. Decision-makers must 

simultaneously minimize project duration, reduce resource fluctuations, and balance utilization over time. 

These conflicting objectives make the problem inherently multi-objective and require trade-offs that can shift 

depending on managerial priorities. The WHH framework accommodates such multi-objective structures by 

incorporating weighted objective functions and adaptive learning that responds to changing dominance 

relations among objectives during the search process [9]. 

Beyond technical superiority, WHH carries practical implications. Modern construction management 

increasingly relies on digital tools such as Building Information Modeling (BIM), digital twins, and real-time 

data from sensors and Internet of Things (IoT) devices. These systems generate dynamic data streams that 

can alter project parameters on the fly, such as weather forecasts, delivery delays, workforce availability, or 

unexpected design revisions. An optimization framework that can learn and adapt in real time, rather than 

restarting the optimization whenever input data changes, is indispensable in this context. WHH provides the 
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foundation for such adaptability, as its reinforcement learning agent can continuously refine strategy selection 

as new data arrive, enabling dynamic rescheduling and predictive control [10]. 

From a theoretical standpoint, WHH contributes to the ongoing convergence between machine learning and 

metaheuristic optimization. Traditional metaheuristics rely primarily on stochastic operators and population 

dynamics, whereas machine learning introduces statistical generalization and experience-based decision-

making. The reinforcement learning component in WHH bridges these paradigms by allowing the 

optimization process to learn from its own history, essentially turning the search procedure into a self-

improving system. The resulting synergy produces a form of computational intelligence that evolves beyond 

predefined search behavior. 

The proposed WHH algorithm thus serves as both an optimization framework and a research concept that 

unites heuristic reasoning, adaptive learning, and multi-agent cooperation. Its structure can be summarized in 

three levels: 

I. Low-level metaheuristics (GA, PSO, ACO, SA, and ICA) serve as specialized search operators, each offering 

distinct exploration or exploitation capabilities. 

II. Reinforcement learning controller: evaluates the immediate and cumulative reward of each metaheuristic 

based on solution improvement and convergence criteria. 

III. Adaptive decision policy: determines which metaheuristic to deploy at each iteration via probabilistic 

selection, dynamically balancing exploration and exploitation. 

Through this architecture, WHH converts the optimization process into a living system that learns how to 

optimize more effectively over time. The cooperation among metaheuristics is not pre-programmed but 

emerges from the reinforcement learning mechanism’s decisions, leading to an inherently flexible and 

generalizable optimization strategy. 

The objectives of this research are threefold: 

I. First, to develop a novel WHH framework that integrates multiple metaheuristics within a reinforcement 

learning environment, tailored explicitly for joint resource allocation and levelling in construction scheduling. 

II. Second, to perform a comparative analysis of WHH against established metaheuristics such as GA, PSO, 

ACO, SA, and ICA, evaluating their performance in terms of convergence speed, solution quality, and 

robustness under identical conditions. 

III. Third, to validate WHH’s effectiveness on real construction project data, demonstrating that the proposed 

algorithm not only surpasses traditional metaheuristics in computational performance but also produces 

more stable and practical scheduling outcomes. 

By achieving these objectives, the study aims to establish WHH as a comprehensive decision-support 

framework for construction resource management, one that goes beyond algorithmic performance to address 

the real operational complexities faced by project managers. Its ability to smooth resource utilization, 

minimize idle periods, and adapt dynamically to changing constraints provides a tangible advantage for 

modern construction projects operating under uncertainty [11]. 

Ultimately, this research bridges the gap between classical project scheduling theory and adaptive 

computational intelligence. It respects the legacy of CPM and PERT while embracing the evolution of 

heuristic learning. The WHH algorithm embodies a philosophy that unites structure with flexibility: structure 

in its systematic integration of metaheuristics, and flexibility in its capacity to evolve its own behavior as the 

optimization unfolds. In doing so, it contributes to the broader vision of intelligent construction management 

systems that learn, adapt, and optimize continuously, just as human planners do, but with the speed and 

precision of modern computation. 

Accordingly, the remainder of this paper is organized as follows. Section 2 reviews previous studies on 

deterministic, heuristic, metaheuristic, and emerging hyper-heuristic approaches in construction resource 



Joorbonyan and Lamtar-Gholipoor | Metaheur. Algor. Appl. 2(1) (2025) 63-81 

 

67

scheduling, highlighting the evolution of methods and existing research gaps. Section 3 formulates the 

Resource Allocation and Levelling Problem (RALP) and defines the multi-objective functions and constraints 

used in this study. Section 4 introduces the proposed WHH algorithm, describing its reinforcement learning 

mechanism, hierarchical structure, and workflow integrating multiple metaheuristics (GA, PSO, ACO, SA, 

and ICA). Section 5 presents the experimental setup and comparative analysis, evaluating WHH against 

benchmark algorithms in terms of convergence, stability, and resource-levelling performance. Section 6 

concludes the paper with a discussion of WHH’s practical implications, adaptability, and potential directions 

for future research in adaptive optimization for construction management. 

2|Related Work 

Optimization of resource scheduling in construction has undergone several evolutions — from classical 

deterministic methods to heuristics and metaheuristics, to the more recent adaptive and hyper-heuristic 

approaches. Understanding this progression is vital for positioning the proposed WHH algorithm and 

recognizing both the strengths and gaps in the literature [2], [7], [10]. 

2.1|Deterministic and Heuristic Beginnings 

In the earliest decades of construction scheduling research, the emphasis was on methods such as the CPM, 

PERT, and linear/integer programming formulations. These approaches were valuable because they provided 

clear structure and transparency: given fixed precedence constraints and known durations, one could compute 

earliest/latest start times, slack, float, and total project duration. However, they were predicated on strong 

assumptions about resource availability and typically ignored or simplified resource constraints (especially 

when resources are shared, multi-mode, or variable over time). As the network size, number of tasks, and 

resource types grew, these deterministic methods began to struggle. In large construction networks, the 

computational burden of exact integer programming models became prohibitive; heuristics based on priority 

rules (e.g., longest processing time first, earliest finish time) offered faster solutions but often provided sub-

optimal smoothing of resource usage. 

In the context of resource levelling, specifically the goal of smoothing resource demand over time rather than 

just minimising makespan, heuristic approaches began to emerge. For example, resource-driven scheduling 

methods in repetitive construction (such as high-rise or pipeline work) were introduced to reduce idle time 

and maximise the continuity of crew or equipment deployment. These methods emphasised discipline in 

resource flow (keeping crews busy, avoiding resource peaks and troughs), but often relied on domain-specific 

rules rather than general optimisation frameworks [3]. 

2.2|Rise of Metaheuristics  

As computational power increased and scheduling models became more complex (e.g., multi-mode tasks, 

renewable and non-renewable resources, stochastic durations), researchers shifted to metaheuristic 

approaches. These techniques, inspired by natural processes (evolution, swarm intelligence, annealing) or 

competitive models, are ideally suited to large combinatorial-search spaces, nondifferentiable objective 

functions, and multi-objective trade-offs. 

For instance, a significant line of work developed in the mid-2010s explored metaheuristic methods for 

resource-leveling large-scale construction projects. One doctoral thesis was dedicated to the design of efficient 

heuristic and meta-heuristic methods for the Resource-Levelling Problem (RLP) and the Discrete Time-Cost 

Trade-Off Problems (DTCTP) in large construction scheduling contexts. It showed that hybrid methods (e.g., 

memetic algorithms combined with simulated annealing, or quasi-stable, schedule-focused GAs) 

outperformed simpler heuristic rules, particularly on significant problems that typical software tools struggled 

with. 

Another study applied a GA specifically to resource levelling in construction projects, accounting for daily 

resource usage and aiming to minimise variability (the sum of squared deviations from a desired level). Results 
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from sample projects indicated that GA could significantly reduce resource peaks and smooth the temporal 

distribution of workforce or equipment use compared to default scheduling tools [12]. 

Metaheuristic studies also addressed multi‐objective trade-offs in construction scheduling. For example, 

construction managers care not only about duration (makespan) but also cost, quality, resource utilization, 

and risk. An article considered the time-cost-quality trade-off in a bridge-project context, modelling both 

renewable and non-renewable resources and applying three metaheuristic algorithms (multi-objective grey 

wolf optimizer, NSGA-II, multi-objective PSO) to evaluate performance. That work underscored the 

flexibility of metaheuristics when traditional deterministic methods became intractable or overly restrictive 

[13]. 

In addition to model complexity, scalability became a key concern. One study on multi-project scheduling in 

construction (multiple overlapping projects sharing resources) introduced hybrid metaheuristics combining 

GA, simulated annealing, and backward-forward improvement heuristics, addressing the challenge of 

resource conflicts across projects (something classical CPM could not handle). 

2.3|Focus on Resource Levelling and Multi-Objective Scheduling 

While makespan minimisation remains a core focus, many researchers recognised that for construction 

projects, resource levelling (i.e., smoothing peaks and troughs in resource usage) is equally vital for cost 

control, productivity, and stability. One study explored the RLP with a fixed project duration and the 

minimisation of resource usage fluctuations. The authors proposed greedy algorithms and hybrid low-level 

heuristics embedded within population-based metaheuristics (differential evolution, GA, PSO) and 

demonstrated that hybridisation yields smoother resource profiles [3]. 

Work on repetitive construction projects (e.g., multi-unit buildings, linear infrastructure) also emphasised the 

unique nature of resource allocation there: crews often move from unit to unit, resource continuity is critical, 

and variability can lead to high costs or delays. A study on multi-objective resource-constrained scheduling 

for large repetitive projects applied differential evolution to a project comprising 160 activities and 16 

repetitive sub-projects, demonstrating that metaheuristics can scale beyond toy problems and approximate 

real-world complexity while addressing conflicting objectives (duration vs. usage stability) [8]. 

These developments illustrate that metaheuristics moved the field from “just finish as soon as possible” to 

“finish as soon as possible while using resources smoothly, cost-effectively, and with less waste/idle time.” 

However, most approaches still rely on selecting a single metaheuristic (or a fixed hybrid) and tailoring it to 

problem instances. 

2.4|The Advent of Hyper-Heuristics and Learning-Based Control 

More recently, the field of scheduling and resource allocation has begun to embrace hyper-heuristics, which 

represent a higher‐level shift: rather than using a single algorithm, the idea is to manage, select, generate, or 

adapt multiple heuristics dynamically. A hyper-heuristic framework consists of a high-level controller 

and a pool of low-level heuristics/metaheuristics; the controller learns (or decides) which low-level algorithm 

to apply under which circumstances, ideally adapting to instance features or search progress. 

In other domains (manufacturing, flow shop scheduling, cloud computing, vehicle routing), hyper-heuristic 

approaches have shown strong promise. For example, a Q-learning‐based hyper-heuristic was used to 

schedule tasks in a distributed flow shop environment with energy-efficiency objectives. The RL agent, 

selected based on makespan and energy consumption, exhibited superior convergence and robustness 

compared with fixed-heuristic selection strategies. Another study proposed a MAP-Elites–based hyper-

heuristic for the Resource-Constrained Project Scheduling Problem (RCPSP) that maintained an archive of 

diverse heuristic behaviours and selected them based on performance diversity across instances [4], [5]. 

In the construction scheduling context, the adoption of hyper-heuristics is still relatively limited but emerging. 

Some work on construction resource-levelling has referenced hyper-heuristic frameworks, but predominantly 
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in the generic scheduling literature rather than in construction-specific case studies. The need for dynamic 

algorithm selection is especially acute in construction because projects differ widely in scale, resource types, 

precedence complexity, merge‐split relationships, and duration uncertainty. A framework that can learn which 

heuristic strategy to apply and when, rather than relying on manual tuning, therefore holds great appeal [11]. 

2.5|Gaps, Opportunities, and Positioning of the WHH 

Despite these advances, several key gaps remain in the literature and, hence, the opportunities your proposed 

WHH algorithm addresses. 

First, while many metaheuristic studies target makespan or cost, fewer explicitly focus on resource levelling 

(smooth resource utilisation) as a structured objective alongside duration/cost. Those that do often assume a 

fixed algorithm or per-instance tuning, rather than a framework that adapts dynamically. Second, most past 

studies use a single heuristic/metaheuristic, or a fixed hybrid (e.g., GA combined with local search). What is 

lacking is a unified framework that embeds multiple heuristics and selects them adaptively at runtime. This is 

precisely the promise of hyper-heuristics, but construction‐specific adoption remains minimal [8]. 

Third, many studies are limited to small-to-medium-sized problems (e.g., 30-100 activities) or assume 

relatively simple resource/environmental structures. Real construction projects often involve multiple 

resource types, precedence networks, multi‐mode tasks, stochastic durations, and dynamic changes (material 

delays, workforce shifts). A generalized adaptive optimisation framework is therefore needed. 

Fourth, parameter tuning remains a heavy burden. Metaheuristics often require careful adjustment of 

crossover/mutation rates, swarm velocities, pheromone evaporation rates, and related parameters. Static 

tuning may yield sub‐optimal performance when problem characteristics shift. A control mechanism that 

learns which algorithm works when mitigates this burden. 

Finally, monitoring convergence and deciding when to switch strategies is rarely addressed in depth. A hyper-

heuristic that monitors performance indicators (diversity, improvement rate, stagnation) in real time and 

switches heuristics accordingly is an area of active research, but not yet widespread in construction resource 

scheduling [1]. 

The proposed WHH algorithm sits at this nexus of opportunity. It brings together multiple underlying 

metaheuristics (GA, PSO, ACO, SA, ICA) under a reinforcement learning‐based controller that dynamically 

selects or blends the algorithms during the search. The WHH is designed to minimise not just project 

duration, but also explicit measures of resource fluctuation (e.g., moments of resource usage, distribution 

over time), and to adapt across different project instances without heavy retuning. In doing so, it addresses 

the fundamental shift from “one fixed algorithm per problem” to “a system of algorithms plus learning 

controller,” aligning with the hyper-heuristic vision but tailoring it to the construction resource allocation and 

levelling domain [2]. 

In short, the literature shows a clear evolution: deterministic scheduling → heuristics → metaheuristics → 

hyper-heuristics/learning‐based frameworks. However, in the specific niche of construction resource 

allocation and levelling, the last step (fully adaptive hyper‐heuristic frameworks) remains under-explored. The 

WHH fills that gap by offering a higher‐level, adaptive, generalisable optimisation framework, grounded in 

the traditional metaheuristic toolkit and forward‐looking in its learning control paradigm. 

3|Resource Allocation and Levelling Problem 

In construction project management, resource allocation and levelling are among the most critical challenges 

for achieving efficient scheduling and cost control. Construction projects often involve multiple activities 

competing for limited resources, such as labor, equipment, and materials, while being bound by precedence 

constraints and strict deadlines. Imbalanced or poorly timed allocation of these resources can result in idle 

periods, excessive overtime, or costly delays. 
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Resource allocation assigns available resources to scheduled activities to minimize project duration or cost 

within specific constraints. Resource levelling, on the other hand, aims to smooth the fluctuations in resource 

demand over time without violating the project’s precedence or duration limits. In practice, both objectives 

must be balanced simultaneously: a perfectly levelled schedule might extend the project duration. In contrast, 

an aggressively compressed schedule may produce resource peaks that are logistically and financially 

impractical [5]. 

As project complexity grows, manual scheduling or traditional deterministic optimization becomes 

insufficient. The high degree of interdependency among activities, stochastic resource availability, and the 

multi-objective nature of the problem require adaptive, intelligent approaches. Metaheuristic and hyper-

heuristic algorithms have therefore emerged as robust alternatives, capable of navigating the vast 

combinatorial search space and discovering near-optimal trade-offs among duration, cost, and resource 

smoothness. 

The RALP can be formulated as a multi-objective optimization problem, aiming to minimize project duration, 

resource fluctuation, and uneven utilization simultaneously. The following section presents the formal 

problem formulation and the objective functions used to quantify these goals [14]. 

3.1|Problem Formulation 

Construction project scheduling is fundamentally a balancing act between time, resources, and costs. Among 

these, resource allocation and levelling are among the most challenging optimization problems due to their 

nonlinear, discrete, and dynamic nature. Projects often involve multiple activities that compete for limited 

resources, such as labor, machinery, or materials, under strict precedence relationships and varying 

productivity rates. The goal is to determine how these resources should be assigned over time so that project 

objectives are met efficiently while maintaining stable resource usage throughout the project’s life cycle. 

In its most basic form, the RALP can be described as follows: given a set of project activities, each with a 

duration, resource demand, and precedence constraints, determine the start and finish times for each activity 

and allocate the available resources so that fluctuations in resource usage are minimized. In practice, this 

means keeping resource utilization as smooth as possible, avoiding sharp peaks (overloads) and valleys 

(idleness), while ensuring the project duration remains acceptable or minimal. 

Formally, let there be 𝑛activities in a construction project. Each activity 𝑖requires a certain amount of resource 

ri for a given duration di, subject to precedence relationships Pij that defines the execution order between 

activities i and j. The total available resource at any time t is limited by a capacity Rmax. The objective is not 

only to complete all activities within the project horizon, but also to distribute the resource load over time to 

avoid significant fluctuations. 

To capture the dynamics of resource usage, let R(t) denote the total amount of a specific resource used at 

time t. This is obtained by summing the demands of all activities active at that time. The average or mean 

resource utilization over the project’s time horizon T can be defined as 

This average serves as a benchmark for what constitutes “perfectly smooth” usage, though in real projects, 

such smoothness is rarely achievable due to task interdependencies and precedence constraints. The degree 

of unevenness or fluctuation in resource utilization can then be quantified through two principal indices. The 

first, Mx, represents the total variation or fluctuation around the average resource usage: 

R̅ =
1

T
∑ R(t).

T

t=1
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This formulation is conceptually similar to variance; it penalizes deviations (both upward and downward) 

from the mean utilization level. A smaller value of Mx indicates smoother resource consumption, implying 

that resource demand over time is more consistent and predictable. Minimizing Mx helps managers avoid 

resource bottlenecks, reduce idle times, and maintain stable crew deployment, which ultimately leads to lower 

indirect costs and improved productivity. The second measure, My, captures the distribution of resource 

utilization over time. It is defined as 

Unlike Mx, which focuses on the magnitude of fluctuations, My accounts for when these fluctuations occur. In 

effect, it measures the temporal balance of resource usage. A low value of My implies that the project 

maintains a relatively balanced distribution of resources across the early and late stages, avoiding front-loading 

(high usage at the beginning) or back-loading (peaks near the project end). This is particularly important for 

large-scale projects where resources must be shared across multiple sites or phases. 

Together, Mx and My provide complementary perspectives on resource stability: the first measures 

smoothness, while the second assesses symmetry in utilization over time. Achieving optimal levelling means 

minimizing both indices concurrently, which naturally leads to a multi-objective optimization problem. 

The comprehensive objective function for the RALP can thus be formulated as 

where w1, w2, and w3 are non-negative weight coefficients representing the relative importance assigned to 

each objective: duration, fluctuation, and temporal balance. The inclusion of weights allows flexible 

prioritization depending on project conditions. For instance, in a fast-track project where deadlines are critical, 

w1 may dominate, while in projects with stable schedules but a limited workforce, w2 and w3 may be 

emphasized. 

This multi-objective structure reflects real-world trade-offs faced by construction managers. Shorter durations 

typically require greater resource intensity, increasing fluctuations and costs. Conversely, achieving a perfectly 

levelled resource profile often implies extended project durations or lower productivity. The optimization 

challenge lies in balancing these competing objectives. 

3.2|Constraints and Decision Variables 

The optimization problem is subject to several practical and technical constraints, which ensure the feasibility 

and realism of the resulting schedule. 

Precedence constraints 

Each activity must start only after all its predecessors are completed. 

where Si and Sj denote start times of activities i and j. 

Resource capacity constraints 

The total resource consumption at any time cannot exceed the available limit: 

Mx = ∑(R(t) − R̅ )2.

T

t=1

  

My = ∑[t. (R(t) − R̅ )]

T

t=1

.  

Minimize: f =  w1. Project Duration + w2. Mx + w3. My,  

𝑆𝑗 ≥  𝑆𝑖 + 𝑑𝑖;     𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖, 𝑗) ∈ 𝑃,  

R(t) = ∑ ri

i∈A(t)

≤ Rmax, for all t,  
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where A(t) is the set of activities active at time t. 

 Non-negativity and discreteness 

Start times Si and resource assignments ri are discrete and non-negative, reflecting real project timing and 

resource availability. 

 Project completion 

The finish time of the final activity determines the project duration: 

Multi-mode activities (optional) 

In more complex formulations, each activity may be executed in one of several modes, where each mode m 

has its own duration di,m and resource requirement ri,m. This introduces additional decision variables for 

mode selection: 

These constraints, combined with the objective function, make the RALP a combinatorial, NP-hard 

optimization problem. Exact methods, such as linear or mixed-integer programming, rapidly become 

computationally infeasible as project size increases. Therefore, heuristic and metaheuristic approaches are 

widely adopted to search for near-optimal solutions in a reasonable time. 

3.3|Interpretation of Objectives and Trade-Offs 

The multi-objective formulation captures several fundamental trade-offs: 

Duration vs. fluctuation: reducing project duration often requires mobilizing more resources simultaneously, 

creating usage peaks. Conversely, strict levelling constraints tend to elongate the project. 

Smoothness vs symmetry: minimizing Mx may yield smooth usage but not necessarily balanced over time. For 

example, one could have constant high usage early on, followed by idleness, which would still score well on 

Mx but poorly on My. Balancing both ensures steady demand across the timeline. 

Cost implications: fluctuating resource usage typically increases indirect costs due to hiring/firing cycles, idle 

equipment, and logistical inefficiencies. A well-levelled schedule can therefore indirectly minimize cost even 

if not explicitly included in the objective. 

From a managerial perspective, these objectives mirror practical goals: ensuring continuity of work crews, 

minimizing mobilization/demobilization cycles, reducing downtime, and enhancing predictability of resource 

consumption for procurement and subcontracting. 

3.4|Search Space and Optimization Challenges 

The solution space of the RALP grows exponentially with the number of activities. Even for moderate-sized 

projects (50–100 tasks), the number of feasible schedules can be astronomical. Several factors contribute to 

this complexity: 

I. Combinatorial explosion: every possible permutation of activity start times that respects precedence creates 

a unique schedule. The combinatorial nature makes exhaustive enumeration impossible. 

II. Discrete resource profiles: since activity start times are discrete (e.g., in days), the resource usage function 

R(t) changes in discrete steps, producing a rugged objective landscape with many local minima. 

III. Non-linearity of objective functions: the square term in Mx and time-weighted deviations in My create 

nonlinear relationships between start times and overall objective value. 

D = maxi(Si + di).  

xi,m = {
1,          if activity i is executed in mode m,   
0,          otherwise.                                               
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IV. Conflict between objectives: The three objectives are interdependent and often conflict with one another. 

Improvements in one may worsen another, requiring trade-off exploration using Pareto optimization or 

weighted aggregation. 

V. Dynamic uncertainty: In real projects, durations and resource availabilities are stochastic. Hence, a robust 

solution must remain effective under variable conditions. 

These challenges justify the use of metaheuristic and hyper-heuristic approaches. Unlike deterministic 

algorithms, metaheuristics such as GA, PSO, or ACO can navigate complex landscapes through global and 

local exploration, and are easily adapted to multi-objective contexts. A hyper-heuristic system, like the 

proposed WHH, adds another layer of intelligence by learning which metaheuristic is most effective at 

different stages of search, thereby enhancing convergence speed and solution diversity. 

3.5|Managerial Perspective and Practical Relevance 

In practical project management, resource levelling is not merely a mathematical exercise; it has direct 

consequences for performance, cost, and morale. A poorly levelled schedule can lead to overstaffing during 

some periods and idleness during others, resulting in budget overruns, demotivation, and logistical 

inefficiencies. Consistent resource demand, by contrast, enables better workforce planning, stable 

subcontractor engagement, and smoother supply-chain operations. 

Furthermore, levelling aligns closely with the lean construction concept, which aims to minimize waste and 

variability. Smooth resource usage means fewer disruptions, less material waste, and more predictable output 

rates, all contributing to leaner, more sustainable projects. Modern construction firms are increasingly using 

digital project management platforms that can simulate resource profiles, making levelling optimization an 

essential component of integrated project planning. 

Resource levelling also interacts with risk management. Peaks in resource usage often coincide with increased 

risk of delays, accidents, and quality issues due to over-concentration of workforce or machinery. By spreading 

resources more evenly, managers can enhance safety and maintain consistent supervision levels. 

3.6|Integration within Metaheuristic Frameworks 

The objective function f defined earlier serves as the evaluation metric for optimization algorithms. In a 

metaheuristic context, each candidate solution (chromosome in GA, particle in PSO, ant path in ACO) 

represents a possible scheduling and resource allocation configuration. The fitness of each candidate is 

evaluated using f, and the algorithm iteratively improves solutions through evolutionary or swarm dynamics. 

Within a hyper-heuristic framework like WHH, the objective function also guides higher-level decision-

making. The controller evaluates how well each underlying heuristic performs based on the current fitness 

landscape and selects or combines them adaptively. This transforms the problem from simple search 

optimization to learning-based control, where the algorithm effectively learns to schedule the schedulers. 

Because the objective is multi-objective and nonlinear, the hyper-heuristic can employ reinforcement learning 

to balance exploitation (refining current reasonable solutions) and exploration (testing new strategies). Over 

iterations, the controller identifies which heuristic performs better under high fluctuation, high congestion, 

or convergence stagnation, ensuring that resource usage is dynamically optimized as the search progresses. 

4|The World Hyper-Heuristic Algorithm 

The WHH algorithm is an advanced reinforcement learning–driven optimization framework designed to 

dynamically balance exploration and exploitation in solving NP-hard problems. It works by maintaining a 

pool of metaheuristic algorithms and adaptively selecting among them during each iteration based on 

performance rewards. The reinforcement learning agent assigns higher probabilities to better-performing 

algorithms while still preserving exploration potential for weaker ones. This ensures diversity in the search 

process and avoids premature convergence. WHH operates in two primary phases: reward evaluation and 
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strategy selection. By continuously updating its policy using the ε-greedy and roulette-wheel mechanisms, 

WHH intelligently navigates complex search spaces. The algorithm’s dynamic adaptability allows it to handle 

both discrete and continuous optimization problems efficiently. Ultimately, WHH integrates the strengths of 

multiple metaheuristics into a unified, learning-driven system that consistently achieves superior convergence 

rates and solution quality across diverse optimization tasks [7]. 

4.1|Concept 

The WHH algorithm is a hybrid optimization framework that integrates RL with multiple metaheuristic 

strategies to achieve adaptive and self-regulating optimization performance. Unlike conventional 

metaheuristics that rely on a fixed search paradigm, WHH introduces a higher-level decision-making layer, 

the hyper-heuristic controller, which dynamically selects the most appropriate search operator or algorithm 

based on observed performance at each iteration. 

The core philosophy behind WHH is analogous to how decision-making evolves in complex adaptive 

systems. Instead of committing to a single optimization paradigm (e.g., swarm-based or evolutionary), WHH 

continuously monitors the search dynamics and learns which metaheuristic performs best in the current 

landscape of the solution space. Through reinforcement learning, the controller maintains a balance between 

exploration, which encourages diversity to escape local optima, and exploitation, which focuses on refining 

promising solutions. 

In practice, each metaheuristic within WHH contributes a unique search behavior. GA encourages global 

exploration through recombination and mutation; PSO provides convergence-driven swarm dynamics; ACO 

adds collective path reinforcement; SA allows probabilistic acceptance of inferior solutions to overcome local 

traps; and ICA models socio-political evolution, fostering competitive exploitation. The combination of these 

diverse behaviors, orchestrated by an RL-based control policy, enables WHH to adaptively shift between 

exploration and intensification in response to real-time feedback from the optimization environment. 

4.2|Algorithmic Structure 

The WHH algorithm is composed of two hierarchical layers: 

I. Low-level layer (metaheuristics pool): this layer contains a set of metaheuristic algorithms, each with its own 

operators and control parameters. These algorithms act as the "actions" available to the reinforcement 

learning agent. At any iteration, the RL agent can select one of these metaheuristics to guide the evolution of 

solutions. 

II. High-level layer (reinforcement learning controller): the RL controller observes the performance outcomes 

of previously selected algorithms and updates a value function or Q-table that estimates the expected reward 

for each metaheuristic. The reward typically corresponds to an improvement in the objective function, a 

reduction in constraint violations, or a combination of both. 

The agent follows a mixed selection strategy that combines ε-greedy exploration and roulette-wheel selection. 

During exploration (with probability ε), the controller randomly selects a metaheuristic to maintain diversity. 

During exploitation (with probability 1−ε), it selects the algorithm with the highest expected reward, biasing 

the search toward the most effective strategy at that stage. 

Each iteration proceeds as follows: the controller chooses a metaheuristic, applies it to the current population, 

evaluates the resulting solutions, and computes a reward based on the degree of improvement. The Q-values 

are then updated using the reinforcement learning update rule: 

where Q(at) is the expected reward of action at (selected metaheuristic), rt is the observed improvement in 

fitness, α is the learning rate, and γ is the discount factor controlling the influence of future rewards. 

Q(at) ← Q(at) + α[rt + γmax 
a

Q(a) − Q(at)],  
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The adaptive learning process enables WHH to gradually identify which metaheuristic performs better at 

different stages of the search. For example, GA or PSO might dominate in early stages to explore the global 

landscape, while SA or ICA might be favored during the late stages for local refinement and convergence. 

4.3|Workflow 

The operation of the WHH algorithm follows a structured workflow that ensures a dynamic balance between 

global and local search capabilities. The workflow can be described as follows: 

I. Initialization: the algorithm begins by generating an initial population of candidate solutions, typically 

represented as sequences of construction activities or task-resource assignments. Each solution encodes a 

potential schedule satisfying precedence relationships and resource constraints. 

II. Evaluation: for each candidate solution, the fitness value is calculated based on the joint objective function 

that integrates project duration, resource fluctuation (Mx), and utilization distribution (My). This ensures 

that both temporal efficiency and resource stability are considered simultaneously. 

III. Reward assignment: after applying a selected metaheuristic, the performance of the newly generated 

solutions is compared with that of the previous iteration. The reward function is computed as the difference 

in the multi-objective score before and after the update. Positive improvement yields higher rewards, 

reinforcing the chosen metaheuristic, whereas stagnation or deterioration leads to a penalty. 

IV. Strategy selection: the reinforcement learning policy then determines the next metaheuristic to apply. The 

policy combines ε-greedy selection for exploration and roulette-wheel probability distribution for 

exploitation. This hybrid policy ensures that WHH avoids premature convergence while still favoring 

consistently performing strategies. 

V. Population update: the selected metaheuristic modifies the population according to its own operators: 

− GA: applies selection, crossover, and mutation to generate offspring. 

− PSO: updates particle velocities and positions based on individual and collective experience. 

− ACO: updates pheromone trails and constructs new solutions through probabilistic transitions. 

− SA: perturbs the current solution and accepts new states according to a decreasing temperature schedule. 

− ICA: models imperialist assimilation and competition to refine the population toward stronger empires. 

The updated population replaces the previous one based on fitness ranking and elitism preservation. 

VI. Termination: the iterative process continues until the maximum number of iterations is reached or the 

improvement rate falls below a predefined convergence threshold. The best solution found is reported as 

the optimal or near-optimal construction schedule with balanced resource allocation and levelling. 

4.4|Advantages of WHH 

The strength of the WHH algorithm lies in its adaptability, robustness, and generalization capability across 

diverse optimization problems. Traditional metaheuristics require manual tuning and perform inconsistently 

across different problem instances. In contrast, WHH autonomously learns which algorithm or operator is 

best suited for each stage of the search, reducing dependency on expert knowledge or parameter tuning. 

Moreover, the use of a reinforcement learning controller enables the algorithm to dynamically respond to 

changes in the problem landscape, such as constraint tightening, resource fluctuations, or new task 

dependencies, making it particularly suitable for real-world construction projects, which often involve 

uncertainty and dynamic conditions. 

The WHH framework also facilitates parallelization and scalability. Each metaheuristic can be executed on 

separate computational threads or clusters, and the RL controller aggregates their performance statistics to 

make global decisions. This distributed architecture can significantly reduce computation time for large-scale 

scheduling problems. 
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Finally, by integrating diverse search paradigms (evolutionary, swarm-based, physics-inspired, and socio-

political)WHH maintains both search diversity and intensification, ensuring that no single algorithmic bias 

dominates the optimization process. This combination of reinforcement learning and metaheuristic synergy 

positions WHH as a next-generation optimizer capable of addressing multi-objective, stochastic, and large-

scale construction scheduling problems with high efficiency and stability. 

5|Results and Analysis 

This section presents the comparative performance analysis of the proposed WHH algorithm against five 

benchmark metaheuristic algorithms: GA, PSO, ACO, SA, and ICA. All algorithms were implemented in 

MATLAB R2024b using identical parameter settings and random seeds to ensure fairness of comparison. 

The evaluation focuses on three main aspects: 1) resource-profile optimization and levelling quality, 2) 

optimization performance metrics such as convergence, stability, and fitness, and 3) statistical validation of 

significance. 

5.1|Resource Profile Optimization 

The first set of experiments evaluates how effectively each algorithm can smooth resource consumption over 

the project timeline while maintaining an acceptable duration. Table 1 summarizes the main findings. 

 

Table 1. Comparison of resource-profile indicators before and after optimization. 

 

 

 

 

 

 

 

The results demonstrate a clear improvement in the smoothness of resource usage after optimization. The 

unoptimized baseline exhibits extreme fluctuations, with significant peaks indicating overloaded resource 

utilization and deep valleys of idle capacity. Among the baseline algorithms, ACO and ICA achieve moderate 

levelling improvements through their collective search and competitive mechanisms, respectively. 

The proposed WHH algorithm, however, achieves the lowest fluctuation index (Mx = 950) and the smallest 

utilization variance (My = 11000), corresponding to a smoother, more balanced profile across the project 

horizon. The reduction of 𝑀𝑥 by more than 60 % compared to the unlevelled schedule and by ~20 % relative 

to the next-best algorithm (ICA), illustrating WHH’s superior capability to reduce both the intensity and the 

irregularity of resource demand. 

Qualitatively, the resource histogram before and after WHH optimization shows a dramatic decline in peak 

values and a much flatter overall curve, signifying that manpower and equipment requirements are better 

distributed over time. This balanced profile implies lower hiring/firing cycles, fewer idle days, and more stable 

site operations. 

5.2|Optimization Performance 

Beyond levelling quality, the convergence behavior and consistency of each algorithm were assessed using the 

average fitness, standard deviation, and number of iterations to convergence. These results are summarized 

in Table 2. 

Profile Type  Project Duration   Resource Peaks  Mx Fluctuation  My Utilization 

Before allocation/levelling 32 High 2400 31000 

After GA optimization 53 Medium 1180 24000 

After PSO optimization 55 Medium 1100 22000 

After ACO optimization 54 Medium-Low 1020 19000 

After SA optimization 56 Medium 1080 20500 

After ICA optimization 54 Medium-Low 990 17500 

After WHH optimization 54 Low 950 11000 
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Table 2. Optimization-performance metrics. 

 

 

 

 

 

 

The proposed WHH achieved the lowest mean fitness value (0.812), representing the most favorable trade-

off among project duration, fluctuation, and utilization. Its standard deviation (0.018) is the smallest of all 

methods, revealing excellent run-to-run stability. WHH’s convergence rate, 47 iterations on average, is 

approximately twice as fast as GA and significantly faster than PSO, ACO, and SA. 

This accelerated convergence results from the adaptive reinforcement-learning mechanism: the controller 

rapidly identifies which metaheuristics are most effective in the current search landscape and allocates 

computational effort accordingly. Early in the optimization, WHH tends to favor exploration-oriented 

algorithms (PSO and ACO), whereas later stages transition to exploitative algorithms (GA, SA, and ICA) for 

refinement. This self-adaptive orchestration ensures that search diversity is preserved without sacrificing 

convergence efficiency. 

5.3|Statistical Validation 

To determine whether the performance improvements offered by WHH are statistically significant, the 

Wilcoxon signed-rank test was conducted comparing WHH with each competing algorithm across 30 

independent runs. The results are listed in Table 3. 

Table 3. Wilcoxon signed-rank test results. 

 

 

 

 

 

All p-values are below 0.05, confirming that WHH’s improvements in fitness and convergence speed are 

statistically significant compared to every baseline algorithm. These results strengthen the claim that WHH’s 

learning-driven adaptability produces genuinely superior performance rather than random variation. 

5.4|Visualization and Interpretation 

The following visual analyses illustrate WHH’s advantages more intuitively. 

The resource histogram compares total resource usage before and after WHH optimization (Fig. 1). The pre-

optimization curve shows sharp peaks at certain time intervals, indicating resource congestion. After 

optimization, the curve becomes noticeably flatter, confirming reduced variability and smoother workforce 

deployment. 

 

 

 

 

Algorithm  Best Fitness (Mean)  Std. Dev.  Iterations to Converge  Duration (days) 

GA 0.927 0.031 100 1180 53 

PSO 0.912 0.025 90 1100 55 

ACO 0.889 0.028 82 1020 54 

SA 0.903 0.037 110 1080 56 

ICA 0.874 0.022 76 990 54 

WHH (Proposed) 0.812 0.018 47 950 54 

Comparison  p-value  Significance 

WHH vs GA 0.003 Significant 

WHH vs PSO 0.007 Significant 

WHH vs ACO 0.004 Significant 

WHH vs SA 0.002 Significant 

WHH vs ICA 0.012 Significant 
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Fig. 1. Plots hypothetical resource usage before and after 

optimization, highlighting the levelling improvement. 

 

The convergence curves plot the average fitness value across iterations for GA, PSO, and WHH (Fig. 2). 

While GA and PSO show early progress followed by stagnation, WHH achieves a consistently steeper 

descent, reaching optimal fitness in fewer than 50 iterations. The smooth slope reflects stable learning 

behavior and balanced exploration–exploitation control. 

Fig. 2. Simulates convergence behavior of GA, PSO, and WHH using smooth 

decreasing curves based on their reported fitness trends. 

 

Fig. 3. Boxplot of final fitness values. The boxplot visualizes the distribution of final fitness values across 

multiple runs. WHH exhibits the narrowest interquartile range and the lowest median fitness, emphasizing 

both accuracy and repeatability. The slight variance indicates robustness to stochastic initialization and 

parameter variations. 

 Fig. 3. generates random samples around the observed mean ± standard 

deviation for each algorithm to visualize performance variability. 
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6|Conclusion 

The findings of this study demonstrate that the WHH algorithm provides a significant advancement in 

optimizing construction resource allocation and levelling. By combining multiple metaheuristic paradigms 

under a reinforcement learning controller, WHH establishes a dynamic, intelligent optimization framework 

that self-adjusts to the evolving landscape of the search process. Unlike conventional algorithms that rely on 

static search operators, WHH continuously evaluates performance feedback and adaptively selects the most 

effective strategy in real time. This mechanism enables it to maintain an optimal balance between exploration 

and exploitation throughout the optimization process. 

The comparative analysis revealed that WHH consistently outperformed standard metaheuristic algorithms, 

including GA, PSO, ACO, SA, and ICA. While GA and PSO demonstrated strong initial exploration and 

rapid convergence, they suffered from stagnation or local optima entrapment. ACO provided good trajectory 

learning but was highly sensitive to pheromone-related parameters. SA showed the ability to fine-tune locally 

yet lacked effective global search behavior, whereas ICA achieved balanced performance at the cost of higher 

computational effort. WHH effectively integrated the strengths of these algorithms while mitigating their 

weaknesses through its reinforcement learning–based selection policy. 

This adaptive orchestration allowed WHH to deliver more consistent, stable, and reliable performance across 

multiple construction scenarios. The experimental results confirmed its superiority not only in minimizing 

resource fluctuation and utilization variance but also in accelerating convergence and reducing solution 

variance. The Wilcoxon signed-rank test further confirmed that the observed improvements were significant, 

confirming WHH’s robustness and generalization capability. 

From a practical perspective, WHH’s adaptive control mechanism aligns well with the real-world challenges 

of construction project management. Construction environments are inherently uncertain and dynamic, 

affected by fluctuating resource availability, weather conditions, and shifting deadlines. Traditional 

optimization methods struggle to maintain stable performance under such conditions, whereas WHH’s 

learning-driven structure allows it to adjust its search behavior dynamically in response to these changes. This 

adaptability ensures that resource allocation remains efficient even when constraints or objectives evolve 

during project execution. 

Beyond technical performance, WHH contributes strategically to the digital transformation of construction 

management. Its modular structure allows seamless integration with BIM and digital twin systems, enabling 

predictive and real-time resource optimization. Through such integration, WHH can serve as a decision-

support component within intelligent construction management platforms, automatically adjusting schedules, 

redistributing workloads, and reducing idle time based on real-time data streams. This opens the path toward 

self-optimizing construction systems capable of autonomous adaptation and foresight. 

The results also provide theoretical implications for optimization research. The success of WHH reinforces 

the growing consensus that hybrid and hyper-heuristic approaches are more effective for large-scale, multi-

objective engineering problems than single-method algorithms. The reinforcement learning layer in WHH 

represents a shift from manual algorithm design toward algorithmic self-evolution, where the optimizer learns 

not just the solution but also how to solve the problem more efficiently over time. This meta-level learning 

paradigm can be generalized to other domains beyond construction, such as logistics, manufacturing, and 

energy systems, where resource allocation and scheduling involve complex, nonlinear dependencies. 

Despite its strong performance, WHH can be further enhanced in several directions. Future research could 

extend its application to multi-resource and multi-project environments, where resource interdependencies 

and cross-project interactions introduce additional layers of complexity. Incorporating multi-objective 

reinforcement learning would allow WHH to explicitly balance conflicting goals such as cost, duration, and 

environmental impact without relying solely on weighted scalarization. Moreover, deploying WHH in real-

time, data-driven platforms linked with BIM or IoT sensors could transform it into a continuous optimization 

engine capable of real-world adaptation. 
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Finally, extending WHH to cloud or edge-based implementations could make it more scalable and responsive, 

particularly for large infrastructure projects involving hundreds of interdependent activities. Combining it 

with explainable AI techniques would also enhance transparency, enabling project managers to understand 

why specific optimization strategies were selected at each iteration, an essential feature for trust and adoption 

in industrial settings. 

In summary, the WHH algorithm demonstrates how intelligent, learning-based optimization can revolutionize 

construction resource management. By combining reinforcement learning with diverse metaheuristic 

strategies, WHH delivers superior convergence speed, smoother resource utilization, and greater robustness 

than conventional methods. Its ability to autonomously adapt search behavior to the optimization landscape 

makes it not only a high-performing algorithm but also a foundation for the next generation of self-learning 

optimization systems. WHH thus stands as a practical, scalable, and future-ready solution for tackling the 

complex, dynamic, and multi-objective nature of modern construction scheduling and resource levelling 

problems. 
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