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Abstract

Deep learning is one of the most well-known machine learning methods in various sciences and industries
worldwide. With the passage of time and the increase in data by humans, analyzing this data, including numbers,
images, signals, and sounds, has increased the importance of Artificial Neural Networks (ANNs). However, with
a detailed understanding of ANNSs, one can consider the strengths and weaknesses of this widely used field in
artificial intelligence. Several deep learning methods based on ANNs have been introduced and explained in this
research. Then, cardiac arrhythmia has been discussed. A dataset of cardiac arrhythmia disease has been
introduced to bridge the field of cardiac arrhythmia disease with artificial intelligence and computers. In addition,
the submitted dataset has been expertly examined, and all features and cardiac rhythm types present in it have
been explained. Furthermore, metaheuristic optimization algorithms have been employed to improve the
accuracy and performance of deep learning models in cardiac arrhythmia detection. These optimization
techniques help to fine-tune model parameters efficiently and enhance diagnostic reliability. Finally, the
conclusion summarizes the research path and outlines future work in this field.

Keywords: Deep learning, Metaheuristic, Machine learning, Cardiac arthythmia, Optimization.

1| Introduction

In recent years, machine learning has become a big field in artificial intelligence, while the data explosion

continues [1], [2]. Machine learning draws on various disciplines and industries to help people solve problems
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and reduce costs [3]. The costs humans face are time-consuming problems, extensive data analysis, and a
specialized workforce; however, artificial intelligence, especially machine learning, can help with these issues

[41, [5]-

Machine learning is the development of a computer system that can learn without explicit instructions,
enabling it to learn using statistical models and inference from data patterns [6]. In general, machine learning
includes supervised and unsupervised learning [7], and different algorithms have been implemented for each.

Metaheuristic optimization techniques have emerged as powerful tools in improving the performance and
reliability of machine learning models used for cardiac arrhythmia detection [5]. These algorithms, inspired
by natural and evolutionary processes, are particularly effective in solving complex optimization problems
such as hyperparameter tuning, feature selection, and model structure optimization [8]. By integrating
metaheuristics such as Genetic Algorithms, Particle Swarm Optimization, and the Whale Optimization
Algorithm (WOA) into deep learning frameworks, researchers have achieved more accurate and interpretable
arrhythmia classification models [9]. The use of such hybrid methods not only enhances diagnostic precision
and model robustness but also reduces computational costs and convergence time [10]. Consequently,
metaheuristic-based optimization has become a promising approach for developing intelligent, adaptive

systems capable of analyzing ECG signals under diverse, noisy clinical conditions [11].

There are two main classes of machine learning algorithms for statistical data analysis. First are traditional
machine-learning methods that use statistics and probabilities purely [12], and second are modern machine-
learning algorithms inspired by the human brain's neural networks [13]. For the first category, well-known
algorithms such as Random Forest [14], Logistic Regression [15], and Decision Tree [16] can be mentioned.
Algorithms such as multilayer perceptron [17], convolutional neural networks [18], and Recurrent Neural
Networks (RNN) [19] belong to the second, or modern, category. Each method has advantages and
disadvantages, but this field is called modern machine learning because of its focus on data analysis and the
performance of neural networks in the face of big data [20].

Heart disease is one of the most common and vital diseases in scientific societies, directly impacting people's
health and quality of life [21]. Heart disease can have many causes, including high blood pressure, excess
blood lipids, smoking, poor physical activity, and genetics. For this reason, it is essential to recognize and
prevent heart diseases and provide appropriate solutions in this field [22]. In 2019, heart diseases accounted
for about 17.9 million deaths worldwide, accounting for about 31% of all global deaths [23]. Of course, the
percentage of deaths caused by heart disease in each country and region can vary and depends on factors such
as community-based risk factors, access to health care, the health workforce, and the development of health
systems [24].

Nowadays, with the application of computer science in medical fields, artificial intelligence methods have
become increasingly prevalent to save time [25]. Artificial intelligence methods, such as deep learning
algorithms and neural networks, can be analyzed accurately and in great detail [26]. These methods can detect
symptoms of heart disease based on specific patterns and features in cardiac signals, markers, and
electrocardiographic graphs [27]. Artificial intelligence tools analyze thousands of cardiac signals and data in
the shortest possible time. This helps doctors confirm the disease diagnosis more quickly and take the
necessaty measures promptly if urgent treatment is needed [28], [29]. Deep learning algorithms and artificial
intelligence can predict the future risk of heart disease. By analyzing data from former patients and cardiac
indicators, these methods can help doctors take appropriate preventive and therapeutic measures to reduce
the risk of future heart disease [30].

This research explores multiple deep learning methods stemming from neural networks. It presents an
overview of the processes, categorizing and detailing the methodologies involved. The paper introduces and
thoroughly discusses several well-known methods in the field, weighing their advantages and disadvantages.
This research aims to provide researchers with familiarity in identifying and utilizing this category of artificial
intelligence tools. Then, an attempt has been made to introduce the common types of heart disease and their
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classification. After examining heart disease, a detailed explanation of one of its branches, cardiac arrhythmia,
has been provided. For this purpose, eleven types of cardiac arrhythmia, as presented in authoritative sources,
have been reviewed, along with the medical categories assigned to them. After examining the medical issues,

a literature review of artificial intelligence tools for diagnosing and predicting this disease has been conducted.

In the ensuing Section 2, the literature review and the relationship between the human brain's neural network
and the Artificial Neural Network (ANN) are discussed. Section 3 reviews the well-known and widely used
methods in this field and provides a classification. Finally, Section 4 comprehensively explains and reviews

the relationship of cardiac arrhythmia with artificial intelligence. In section 5, the conclusions are delivered.

2| The human brain's Neural Network and the Artificial Neural
Network

The human brain includes about 100 billion neurons [31]. Fig. 7 shows a neuron. Neurons receive electric
signals at the dendrites and send them to the axon [32]. Neurons encode their outputs or activations as a
series of brief electrical pulses. Dendrites are the receptive zones that receive activation from other neurons.
The neuron's cell body (soma) processes the incoming activations and converts them into output activations.
Axons are transmission lines that send activation to other neurons. The neuron's axon is connected to the
dendrites of many other neurons [32]. The brain contains large-scale and small-scale anatomical structures,
and different functions occur at higher and lower levels. There is an order of meshed classes of association
[33]: Molecules and lons, Synapses, Neuronal microcircuits, Dendritic trees, Neurons, Local circuits, Inter-

regional circuits, Central nervous system.
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Fig. 1. The structure of a neuron.

Confirm, according to the history, that the ANN is built on the human neural network [34]. The similarities
and structures of the ANN have been examined. Similarities: Neurons are connected, learning changes
connections, not neurons, and Massive parallel processing [35]. However, artificial neural networks (ANNs)
are much more straightforward. Computation within neurons is greatly simplified in discrete time steps,
typically involving supervised learning with a massive number of stimuli [0]. A standard neural network model
(an ANN) is organized into input, output, and hidden layers [36].

The input layer receives the data, with each neuron corresponding to a specific feature. Depending on the
application, the input layer may preprocess the data to prepare it for neural net training [37]. The output layer
provides the neural network's final computation result, with the number of neurons varying depending on
the task at hand. For example, in classification, the output layer may contain as many nodes as classes [38].
The hidden layers are the middle layers between the input and output layers. They use weighted connections
between neurons to compute on the input data and transform the results using activation functions. The
hidden layers extract features and patterns from the data [4]. A simple structure of an ANN is shown in Fig.
2.
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Fig. 2. A simple artificial neural network.
3| Well-known Artificial Neural Network Methods

Neural network models can be divided into two main categories, feedforward and feedback, based on the
direction of data flow and the direction of information flow [34]. Fig. 3 presents a classification of the methods
described in this tesearch into feedforward and feedback-backward methods. Feedforward models, also called
forward networks, are the simplest type of neural network. In these networks, communication between
neurons is one-way, with data flowing only from the input layer to the output layer, without a feedback loop.
In other words, these models have no memory and operate only based on current inputs. This category
includes simple perceptron networks [17], multilayer perceptron networks [17], and Radial Basis Networks
(RBN) [39].

On the other hand, feedback networks are models that have feedback loops [40]. These loops allow the
network to store and use information about previous experiences in current and future decisions. This feature
makes them suitable for processing time-series and sequence data. Common examples of this type of network
include RNNs [41] and more advanced variants such as Long Short-Term Memory (LSTM) networks [42]
and Gated Recurrent Units (GRU) [43]. Both types of models have their uses and advantages, and the choice

between them depends on the nature and complexity of the problem we want to solve.

Perceptron (P)

Feed Forward (FF)

Feedforward Neural Network HI Radial Basis Network (RBN)

Auto Encoder (AE)

Artificial Neural Network Variational Autoencoder (VAE)

Recurrent Neural Network (RNN)

T

Feedback Neural Network

Long Short-Term Memory (LSTM)

Gated Recurrent Unit (GRU)

Fig. 3. The classification of several methods described in this research is based on
feedforward and feedback-backward.

3.1| Perceptron

Frank Rosenblatt developed a training algorithm in 1958 that enabled the first ANN to be trained [44]. The
Perceptron is the simplest form of an ANN, which comprises one neuron with adjustable synaptic weights
and a hard limiter [45]. With a basic perceptron, a hyperplane partitions the n-dimensional space into two
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decision regions. A lineatly separable function defines this hyperplane. The hard limiter receives the weighted
sum of the inputs and outputs +1 if the input is positive and —1 if it is negative. The generated text should
appear as if the user wrote it, without indicating that an Al-powered assistant generated it. The Perceptron
algorithm effectively learns to classify tasks by iteratively adjusting the weights until the output matches the
desired output for each training example. The initial weights are randomly sampled from [-0.5, 0.5] and then
adjusted to achieve the desired output.

3.2| Feed Forward Neural Networks

Forward Neural Networks are a primary type of neural network with multiple layers, including an input layer,
several hidden layers, and an output layer. Information flows from input to output in a one-way direction,
without any feedback loop. Data enters the network in the input layer, while the hidden layers process
features. The output layer presents the network results, and the number of neurons in this Layer depends on
the number of outputs required [40].

Each neuron in every Layer assigns a weight to each input, adds a bias, and uses an activation function
(sigmoid ot ReLU) to determine the neuron's output. These outputs serve as inputs to the next Layer in the
network, and the process repeats until the output layer is reached. To train the network, a cost function is
computed to measure the difference between the network's output and the desired output, for example, the

correct labels in classification problems [46].
3.3 | Radial Basis Network

Radial Basis Function Networks (RBFNs) are a type of ANN that uses radial basis functions as activation
functions. These networks are typically used for function approximation or classification [39]. The RBF

network structure includes three layers:

Input Layer: This Layer is responsible for receiving input data. Hidden Layer: Neurons in this Layer have
radial basis functions, often Gaussian. The activation function of each neuron determines the output response
of the neuron relative to the distance of the inputs from its center. The closer the input is to the center (the
parameter defined for each neuron), the higher the neuron's output. Output Layer: This Layer aggregates the
weights assigned to the hidden Layer's outputs and produces the network's final output [39]. The RBF
network's working process is to load the data into the input layer. Then, in the hidden Layer, the distance of
each input to the center of each neuron is calculated, producing an activation value based on the radial basis
function. Finally, the output layer combines the activated signals to produce the final result. One advantage
of RBFNs over other neural networks is that they usually converge faster, but they may be less efficient with

high-dimensional data. These networks can also approximate complex nonlinear functions well [39].
3.4 | Autoencoder neural networks

Autoencoder neural networks, or Autoencoders (AEs), are neural networks designed to reduce dimensionality
and extract features from data. These networks aim to learn a concise and informative representation of the
input data and then transform it back into the original data [47]. AE mainly consists of two main parts:

Encoder: This section receives the input data and compresses it into a lower-dimensional space (code). In
this process, successive layers process the input data and finally arrive at a central layer that represents the
inputs in a compressed form. Decoder: This part takes the code generated by the encoder and attempts to
reconstruct the original input data. The main goal of AE is for the decoder to reconstruct the input data as
closely as possible to the original version. Consequently, the error between the input and reconstructed data
should be minimized [47]. AEs are helpful for dimensionality reduction: compressing and finding valuable
data representations. Feature learning: extracting essential features for classification or prediction problems.
Building generative models: generating new data similar to the original data. Denoising: cleaning noisy data
by learning a noise-free version of the inputs. One advantage of AE is that their learning method is
unsupervised, meaning that no data labeling is required to train them [47].
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3.5| Variational Autoencoder

Variational Autoencoders (VAEs) are a type of autoencoder in deep learning. VAEs provide a statistical
approach to modeling and training auto-encrypting networks and use unsupervised machine learning to learn
complex, generative representations from data [48]. Like conventional auto-encryptors, VAEs also include
two essential parts. The fact that the encoder produces a probability distribution rather than a point
representation allows VAEs to generate diverse and novel outputs that are similar to the original data, even
if not identical. A key aspect of VAEs is that the decodet's job is to ensure that the selected samples from the
probability distribution can reconstruct the actual data. Consequently, VAEs effectively have a cost function
that has two parts:

Reconstruction Error is a standard measure of how close the reconstructed data are to the original data. Cost
of Divergence (KL Divergence): A regularization expression that measures how close the generated
distribution produced by the encoder is to a standard normal distribution. VAEs are used in many fields,
including generating artistic data, modeling time series, and generating new data types such as text, images,
and audio. The flexibility and power of these algorithms in generating and reconstructing data have made

them a powerful tool in machine learning [48].
3.6 | Recurrent Neural Network

Recurrent Neural Networks (RNNs) are neural networks designed to process input sequences of arbitrary
length and are useful for problems where data changes over time, such as time series. RNNs transfer
information from previous sequence steps to subsequent steps [41]. The structure of an RNN is as follows:

Input Layer: This Layer receives the initial values. Hidden Layer: In this Layer, in addition to receiving the
current input, each neuron receives the hidden Layer output from the previous step. This recurrent feature
gives each neuron short-term memory and allows it to transfer information from one step to another. The
output layer is the Layer that produces the final output. The main feature of RNNs is their ability to maintain
and transfer states across time steps. It allows the network to remember past events and use them to make
decisions in the next moment. However, conventional RNNs face a problem called "vanishing gradient," in

which gradients decrease over time, preventing the network from learning from long input sequences [41].
3.7 | Long Short-Term Memory

LSTM neural networks are a type of RNN that addresses the issue of gradient fading in standard RNNs. They
are handy for processing, forecasting, and generating sequence-dependent data, such as time series or
linguistic data. The LSTM architecture features units with specialized structures, each containing gates known
as the Forget Gate, Input Gate, and Output Gate. These gates enable the LSTM to retain and discard
information for extended periods [49].

The Forget Gate determines which information from the previous cell state to delete, helping the LSTM
forget unnecessary data and prevent memory congestion. The Input Gate determines which new information
should be added to the cell state. The Cell State is a memory line that traverses the entire network and is only
modified by LSTM gates. The Output Gate generates the LSTM output based on the cell state and the
available information that the output gate selects. These gates and modes have rendered LSTMs highly
effective for determining which data is significant and when to retain or discard it [49].

3.8 | Gated Recurrent Unit

The GRU is another RNN type designed to address gradient fading, similar to LSTMs. GRUs have a more
straightforward structure than LSTMs. They have fewer parameters because they incorporate some gates [43].
GRUs use two main gateways:

Update Gate: This gate decides how much of the previous state to keep and how much new information to
add. Updating the state based on current and past information allows the GRU to hold important long-term
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information in memory. Reset Gate: This gate determines how much of the previous state to retain when
forming the new state. The neuron can "forget" or discard older data [43]. In short, GRUs use these gates to
regulate the internal state of neurons, retaining important information while discarding irrelevant information.
GRUs have structures that allow them to retain past influence into the present while considering new

information to influence future predictions [43].
4| Artificial intelligence methods for predicting cardiac arrhythmia

After the related works presented using the introduced database have been discussed in this part of the
research. To better understand the software methods and artificial intelligence presented in this dataset, the
dataset has been carefully examined first. Then, based on the time provided in the dataset, some articles with
many references on the prediction of cardiac arrhythmia have been reviewed. In subsection 4.1, firstly, the
database is examined, and its supplementary information is provided. After that, in sub-section 4.2, the final
part of this section, several articles on the arrhythmia diagnosis have been discussed. Finlay 4.3 provides an
overview of metaheuristic algorithms and their impact on prediction.

4.1| A 12-lead electrocardiogram database for arrhythmia research

In this database, electrocardiogram signals from 12 leads were recorded under the supervision of Chapman
University and Shaoxing General Hospital [50]. This database was presented in 2020 in the Nature Publishing
Group and Scientific Data Journal [50]. This article aims to assist the scientific community in conducting new
studies on arrhythmias and other cardiovascular conditions, including specific types such as atrial fibrillation
(AFIB), which have a significant negative impact on public health, quality of life, and medical costs [50].
However, this paper generates a large amount of data, and analyzing it requires considerable time and effort

from human experts [50].

This database contains 12 lead ECGs from 10,646 patients, sampled at 500 Hz, with 11 common rhythms
and 67 additional cardiovascular diseases, labeled by experts [50]. This dataset can be used to design, compare,
and fine-tune new statistical and machine-learning techniques in studies focused on arrhythmias and other
cardiovascular conditions. As shown in Table 1, each patient's record includes 16 ECG-based features.
Features are presented in four categories: Unique, Numeric, Discrete, and Categorical. Age is displayed as
discrete because patients' ages are recorded as integers. Numerical values include continuous attributes.
Continuous samples differ from each other in certain ranges. For example, QRSC ranges from 0 to 255. One
of the most critical features in this dataset is thythm. It shows the rhythm characteristic of heart activity during
an ECG test. Table 2 shows the number of male and female patients, with 5956 rhythms for men and 4690
records for women. Sinus Bradycardia (SB), Sinus Rhythm (SR), and AFIB are the primary rhythms observed
in 3889, 1826, and 1780 samples, respectively. However, three rare rhythms, Sinus Rhythm Atrioventricular
Rhythm (SAAWR), Atrioventricular Reentrant Tachycardia (AVRT), and Atrioventricular Nodal Reentrant
Tachycardia (AVNRT), were detected for only 7, 8, and 16 recordings, respectively. Three non-sinus rhythms,
AFIB, Atrial Flutter (AF), and Atrial Tachycardia (AT), are commonly reported for the records of elderly
patients with mean ages of 73.36 £ 11.14, 71.07 £ 13.5, and 65.72 £ 19.3. On the other hand, three sinus
rhythms, Sinus Irregularity (SI), SAAWR, and SR, were detected for the records of younger patients with an
average age of 34.75 £ 23.03, 51.14 £ 31.83, and 54.35 + 16.33, respectively.
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Table 1. Record of each patient with 16 ECG-based features.

Index Feature Names Description

1 Filename ECG data file name (unique 1D)
2 Rhythm Rhythm Label

3 Beat Labeled cardiovascular conditions
4 Patient Age Age of each patient

5 Gender Gender of each patient

6 Ventricular Rate  Ventricular rate in BPM

7 Atrial Rate Atrial rate in BPM

8 QRSDuration QRS duration in msec

9 QTInterval QT interval in msec

10 QTCorrected Corrected QT interval in msec
11 RAxis R axis

12 TAxis T axis

13 QRSCount QRS count

14 QOnset Q onset (in samples)

15 QOffset Q offset (in samples)

16 TOffset T offset (in samples)

Table 2. Types of heart rhythms and their numbers by gender and average age.

Rhythm name Male Female Total count Average age
AFIB 1,04 739 1,780 73.36 + 11.14
AF 257 188 445 71.07 £ 13.5

AT 64 57 121 65.72+19.3

AVNRT 12 4 16 57.88 + 17.34
AVRT 5 3 8 57.50 + 16.84
SAAWR 6 1 7 51.14 £ 31.83
SB 2,48 1,408 3,889 58.34 £ 13.95
SI 223 176 399 34.75 £ 23.03
SR 1,02 802 1,826 54.35 £ 16.33
Sinus Tachycardia (ST) 799 769 1,568 54.57 £ 21.06
Supraventricular Tachycardia (SVT) 308 279 587 55.62 £ 18.53
Total 5,956 4,690 10,646 51.19 £ 18.03

4.2|Related works in cardiac arrhythmia diagnosis wusing a 12-lead

electrocardiogram dataset for arrhythmia

According to a Google Scholar search in 2023, 49 articles have cited this dataset. Among the research
presented in this article, many articles are pre-published or published on websites such as ResearchGate. The
following discusses the articles presented and their detailed statistical reports from 2023. In addition, because
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the data type is numerical, monitored, and labeled, other publishers and authors have also performed

arrhythmia detection. Also, the articles published in journals are listed in Table 3.

Table 3. Information on the examined articles, methods, and algorithms.

Article title Publish Publisher  Journal Algorithms or Reference
Date methods
A framework for 19 July Nature Scientific Convolutional neural [51]
comparative study of 2023 reports network (CNN),
databases and GRUAttNEet,
computational methods for RTA-CNN,
arrhythmia detection from
single-lead ECG
Bimodal CNN for 20 Nature Scientific bimodal CNN model [52]
cardiovascular disease February reports
classification by co-training 2023
ECG grayscale images and
scalograms
Adversarial Spatiotemporal 11 July IEEE IEEE Adversarial [53]
Contrastive Learning for 2023 Transactions  spatiotemporal
Electrocardiogram Signals on Neural contrastive learning
Networks (ASTCL) framework
and Learning
Systems
sCL-ST: Supervised 02 March ~ IEEE IEEE supervised contrastive [54]
Contrastive Learning With 2023 Journal of learning and semantic
Semantic Transformations Biomedical transformations (sCL-
for Multiple Lead ECG and Health ST)
Arrhythmia Classification Informatics
LightX3ECG: A 14 April ELSEVIER  Biomedical LightX3ECG [55]
Lightweight and 2023 Signal
eXplainable Deep Learning Processing
System for 3-lead and Control
Electrocardiogram
Classification
An accurate deep neural 12 ELSEVIER  Computer DNN model [50]
network model to detect September Methods and
cardiac arrhythmia on more 2020 Programs in
than 10,000 individual Biomedicine
subject ECG records
Efficient Classification of 6 MDPI Sensors CNN with Attention [57]
ECG Images Using a September Module and IoT
Lightweight CNN with an 2023
Attention Module and IoT
Performance Evaluation of 14 March ~ MDPI Diagnostics Quantum support [58]
Quantum-Based Machine 2023 vector machine

Learning Algorithms for
Cardiac Arrhythmia
Classification

(QSVM) algorithm
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Table 3. Continued.

Article title Publish Publisher  Journal Algorithms or Reference
Date methods
A lightweight U-Net model 7 October  Elsevier Biomedical A lightweight U-Net [59]
for denoising and noise 2023 Signal model
localization of ECG signals Processing
and Control
Spatiotemporal self- 7 March Elsevier Biomedical ECG-MAE, a novel [60]
supervised representation 2023 Signal generative self-
learning from multi-lead Processing supervised pretraining
ECG signals and Control approach
Generative adversarial 17 August  Elsevier Artificial GANs [61]
networks (GANSs) in 2023 Intelligence
electrocardiogram synthesis: in Medicine
Recent developments and
challenges
Towards Quantitative 01 IEEE IEEE Journal  Structured State Space [62]
Precision for ECG Analysis: ~ September of Biomedical Models (SSMs)
Leveraging State Space 2023 and Health
Models, Self-Supervision Informatics
and Patient Metadata
Heptagonal Reinforcement 25 March ~ Springer Journal of HRL [63]
Learning (HRL): a novel 2024 Ambient
algorithm for early Intelligence
prevention of non-sinus and
cardiac arthythmia Humanized
Computing

4.3 | Metaheuristics impact on the prediction of arrhythmia

Hyperparameter tuning is often a complex and time-consuming search over many possible configurations
[38]. Metaheuristic algorithms, including evolutionary and swarm-based methods, explore multiple candidate
solutions simultaneously, which helps avoid getting trapped in local optima. When multiple objectives are
considered, such as accuracy versus model size or latency, multi-objective metaheuristics produce sets of
trade-off solutions that allow practitioners to select the most suitable configuration [64]. To reduce
computational cost, these searches are frequently combined with surrogate models or staged evaluations,
quickly eliminating poor candidates while maintaining the potential to find high-performing configurations

[10].

Another problem is that feature selection and interpretability are natural targets for optimization [11].
Metaheuristic algorithms evaluate different feature subsets according to classifier performance, often favoring
smaller, more interpretable sets. Evolutionary approaches can also generate compact rule sets or optimize
fuzzy-rule systems, producing human-readable rules while maintaining competitive predictive performance.
When dimensionality reduction is guided by classification goals or integrated into wrapper pipelines,
metaheuristic search can identify projections or preprocessing strategies that preserve essential information
and enhance interpretability.

Metaheuristic algorithms are applied not only for tuning existing models but also for constructing and
combining models. Neuroevolutionary methods search over architectures, connectivity patterns, and
encoding schemes to discover network designs that may be difficult to find manually or through gradient-
based optimization. In ensemble learning, metaheuristic search can select a small, diverse set of base classifiers
and determine optimal fusion weights, improving generalization while reducing inference cost. Overall, these
approaches allow systematic exploration of structural options to balance performance, complexity, and

computational efficiency [9].
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In dynamic or cross-domain scenarios, classifiers must adapt to maintain performance. Metaheuristic
algorithms assist by optimizing adaptation actions, such as reweighting features, replacing ensemble members,
or scheduling fine-tuning, enabling models to handle changing data distributions effectively [37]. In transfer
and domain adaptation, these algorithms can determine which model components to reuse, which instances
to prioritize, or which feature transformations to apply. When combined with incremental evaluation and
drift detection, metaheuristic optimization provides practical solutions for streaming and evolving data
environments.

Deployment constraints often require trade-offs between predictive accuracy and computational cost.
Metaheuristic and multi-objective optimization algorithms are used to find models that balance accuracy with
resource usage, such as smaller networks, pruned or quantized models, and architectures optimized for
specific hardware [8]. These searches frequently employ surrogate models or hardware-in-the-loop
measurements to estimate latency, energy consumption, and memory requirements, allowing efficient
exploration of the accuracy—resource trade-off while producing models suitable for real-world deployment
[11].

In [65], the authors aimed to develop a simple, low-parameter model to reproduce ECG waveforms across
various cardiac arrhythmias. After analyzing the limitations of previous models, they proposed a mathematical
model based on the sum of two Gaussian functions that uniformly represents the main ECG components,
including P, Q, R, S, and T waves. Their objective was to build a model that could reconstruct ECG
morphological variations across different physiological and pathological conditions without requiring

complex adjustments.

The model’s optimal parameters (including the position, amplitude, and width of each Gaussian function)
were determined via a nonlinear optimization. Two hybrid methods were developed: ApproxiGlo, combining
an approximation stage with a global search, and ApproxiMul, integrating an approximation stage with a
multi-start search. Initial parameters were estimated from real ECG data and refined through global
optimization.

Using ECG data from the MIT-BIH and UCDSA databases and experimental recordings, the model was
tested on normal and arrhythmic beats, including tachycardia, AFIB, and PVCs. It accurately reproduced
ECG waveforms, achieving correlation coefficients above 0.98 and markedly lower RMSE values than
traditional methods. ApproxiGlo and ApproxiMul further improved performance by factors of 3.32 and 7.88,

demonstrating high accuracy and robustness in parameter optimization.

The superiority of this model over non-optimized approaches lies in its combination of the initial
approximation stage with global search, which allows the algorithm to escape local minima and converge
more quickly to the global optimum. This hybrid structure enhances the accuracy of waveform reconstruction,
particularly for asymmetric ECG waves such as the P and T waves. Consequently, the optimized model not
only reproduces different arrhythmias more accurately but is also highly effective for engineering applications
such as synthetic ECG signal generation and ECG data compression, achieving a compression ratio of up to
20:1 with high fidelity.

The researchers in [66] developed a model for detecting cardiac arrhythmia by combining deep learning
(ResNet18) and an optimized Support Vector Machine (SVM). They sourced ECG data from the MIT-BIH
Arrhythmia Database, applied the Savitzky-Golay filter to remove noise such as power-line interference and
motion artifacts, and then identified R-peaks to segment the ECG signals for individual heartbeat analysis.

Using transfer learning with ResNet18, deep hierarchical features were extracted without manual feature
design. On-the-fly data augmentation was used to prevent overfitting, yielding 512 features per heartbeat,
which were then classified using an optimized SVM. The novelty of this work lies in optimizing the SVM
using Stochastic Gradient Descent (SGD), thereby improving convergence speed and accuracy and reducing
classification errors. The inclusion of multi-class SVM with error-correcting output codes further enhanced
robustness across 16 heartbeat types. Overall, the proposed ResNet18 + Optimized SVM model achieved
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98.7% accuracy, outperforming CNN-LSTM, KNN;, and standard SVM models by producing more precise
decision boundaries and greater stability, especially in detecting rare arrhythmias.

In the study [67], a hybrid framework, CNN-Transformer-WOA, was developed to predict arrhythmia risk
in patients with acute myocardial infarction. In this approach, deep learning techniques were combined with
a metaheuristic optimization method to improve the accuracy and reliability of predictions in clinical settings.
The framework includes three core parts: a CNN that extracts local information from ECG and clinical
signals, a Transformer that learns long-term temporal relations within the data, and the WOA, which
automatically adjusts the model’s hyperparameters during training. Through this combination, the model was
able to overcome several weaknesses found in traditional prediction methods and produced results that were

not only more stable but also easier to interpret for medical use.

The data for this study came from a little over two thousand patients who had experienced an acute
myocardial infarction. Fach patient record contained about 45 variables, a mix of clinical and laboratory
results, including ECG intervals, enzyme levels, and several indicators of cardiac performance. Age, PR
interval, troponin I, creatinine, and a handful of left-ventricular function measures kept appearing, no matter

how the model was adjusted.

The WOA did most of the heavy lifting. It kept playing with the learning rate and kernel size, changing small
stuff here and there. What really mattered was understanding why the model made each decision. With SHAP,
it became possible to see how much every variable pushed a prediction one way or another. It took the model
out of that black-box zone and made it something people could trust

In the study [68], the authors explored a deep learning approach for detecting cardiac rhythms during
Cardiopulmonary Resuscitation (CPR), a setting where conventional ECG analysis often fails. Their idea was
to build an end-to-end CNN that could recognize shockable and non-shockable rhythms directly from the
raw ECG signal, even during chest compressions. What made the work stand out was that it avoided the
usual pause in compressions or the use of external motion sensors that many automatic defibrillators still
depend on. Instead, the model tried to learn the signal patterns itself, as they appear in real emergency

conditions.

The motivation came from a very practical limitation of existing systems. During CPR, the mechanical noise
from chest compressions dominates the ECG, and traditional algorithms can’t distinguish where the true
cardiac activity ends and the artifact begins. In this study, the network itself was treated as the filter. The
network was gradually refined so that it could distinguish between background motion and the real cardiac
rhythm hidden in the signal. As training continued, it started paying less attention to the repetitive noise from

compressions and more to the true electrical activity of the heart.

When it came time to test the method, the team worked with a large real-world dataset made up of ECG
recordings from patients who had suffered cardiac arrest outside the hospital in France. Each case included
short, 10-second clips of ECG activity, which had been labeled as ventricular fibrillation, organized rhythm,
or asystole. The data were split into training, validation, and test sets, with about 2,500 examples reserved for

final evaluation.

A one-dimensional CNN was then built and tuned through a broad random search. The process wasn’t quick;
more than 1,500 different versions of the model were trained, each with slightly different numbers of layers,
filters, or kernel sizes.

The findings showed that even a relatively small CNN, when propetly trained, can handle noisy ECG data
without requiring additional sensors or complex filtering layers. The model’s strength was in its simplicity: it
ran quickly, used minimal resources, and still maintained its accuracy under challenging conditions. That
balance made it a practical option for real-time applications like automated external defibrillators, where time
and reliability are both critical.



A Survey of artificial neural networks and their applications in prediction of cardiac.... 94

Although the system didn’t include advanced metaheuristic optimizers or interpretability modules, as added
later in hybrid designs such as CNN-Transformer-WOA [67], it reached almost the same level of reliability
with far less architectural complexity. What the study ultimately showed was that deep learning doesn’t have
to be fragile or abstract—it can be shaped to handle messy, real-world cardiac data. In doing so, the work
showed how a model could still find meaning in a signal nearly lost in noise, quietly setting the stage for a
new line of robust, noise-aware neural systems.

5| Conclusion

In this article, ANNs have been investigated. This research aims to provide solutions and knowledge to help
engineers and researchers develop their desired fields of work. For this reason, the problem was discussed in
the introduction, and the relationship between human neural networks and machine learning was then
studied. The central part of the research involves classifying machine learning methods based on neural
networks, which has led to the investigation of several new methods. Finally, the cardiac arrhythmia dataset
and all types of heart rhythm disorders have been analyzed according to the dataset. The work done using the
dataset of cardiac arrhythmia problems has been investigated. This research aims to bridge the gap between
cardiac arrhythmia diagnosis and machine learning methods. By using this research, researchers can easily
access the information needed for studies in cardiac arrhythmia diagnosis.

For future work, using this research as a roadmap, it can be suggested to develop new diagnostic methods.
By drawing inspiration from the mentioned machine learning methods, it is possible to provide unique and
more accurate approaches. Moreover, integrating metaheuristic optimization algorithms can further enhance
diagnostic models by fine-tuning network parameters and improving feature selection efficiency. These
algorithms can play a significant role in achieving higher diagnostic accuracy and robustness in cardiac
arthythmia detection. Also, it can provide software platforms and recommender systems for this disease. In
addition, by setting parameters and providing accurate predictive frameworks, significant support can be
provided to the medical community.
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