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1|Introduction    

In recent years, machine learning has become a big field in artificial intelligence, while the data explosion 

continues [1], [2]. Machine learning draws on various disciplines and industries to help people solve problems 
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Abstract 

Deep learning is one of the most well-known machine learning methods in various sciences and industries 

worldwide. With the passage of time and the increase in data by humans, analyzing this data, including numbers, 

images, signals, and sounds, has increased the importance of Artificial Neural Networks (ANNs). However, with 

a detailed understanding of  the strengths and weaknesses of this widely used field in 

artificial intelligence. Several deep learning methods based on ANNs have been introduced and explained in this 

research. Then, cardiac arrhythmia has been discussed. A dataset of cardiac arrhythmia disease has been 

introduced to bridge the field of cardiac arrhythmia disease with artificial intelligence and computers. In addition, 

the submitted dataset has been expertly examined, and all features and cardiac rhythm types present in it have 

been explained. Furthermore, metaheuristic optimization algorithms have been employed to improve the 

accuracy and performance of deep learning models in cardiac arrhythmia detection. These optimization 

techniques help to fine-tune model parameters efficiently and enhance diagnostic reliability. Finally, the 

conclusion summarizes the research path and outlines future work in this field. 
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and reduce costs [3]. The costs humans face are time-consuming problems, extensive data analysis, and a 

specialized workforce; however, artificial intelligence, especially machine learning, can help with these issues 

[4], [5]. 

Machine learning is the development of a computer system that can learn without explicit instructions, 

enabling it to learn using statistical models and inference from data patterns [6]. In general, machine learning 

includes supervised and unsupervised learning [7], and different algorithms have been implemented for each. 

Metaheuristic optimization techniques have emerged as powerful tools in improving the performance and 

reliability of machine learning models used for cardiac arrhythmia detection [5]. These algorithms, inspired 

by natural and evolutionary processes, are particularly effective in solving complex optimization problems 

such as hyperparameter tuning, feature selection, and model structure optimization [8]. By integrating 

metaheuristics such as Genetic Algorithms, Particle Swarm Optimization, and the Whale Optimization 

Algorithm (WOA) into deep learning frameworks, researchers have achieved more accurate and interpretable 

arrhythmia classification models [9]. The use of such hybrid methods not only enhances diagnostic precision 

and model robustness but also reduces computational costs and convergence time [10]. Consequently, 

metaheuristic-based optimization has become a promising approach for developing intelligent, adaptive 

systems capable of analyzing ECG signals under diverse, noisy clinical conditions [11]. 

There are two main classes of machine learning algorithms for statistical data analysis.  First are traditional 

machine-learning methods that use statistics and probabilities purely [12], and second are modern machine-

learning algorithms inspired by the human brain's neural networks [13]. For the first category, well-known 

algorithms such as Random Forest [14], Logistic Regression [15], and Decision Tree [16] can be mentioned. 

Algorithms such as multilayer perceptron [17], convolutional neural networks [18], and Recurrent Neural 

Networks (RNN) [19] belong to the second, or modern, category. Each method has advantages and 

disadvantages, but this field is called modern machine learning because of its focus on data analysis and the 

performance of neural networks in the face of big data [20]. 

Heart disease is one of the most common and vital diseases in scientific societies, directly impacting people's 

health and quality of life [21]. Heart disease can have many causes, including high blood pressure, excess 

blood lipids, smoking, poor physical activity, and genetics. For this reason, it is essential to recognize and 

prevent heart diseases and provide appropriate solutions in this field [22]. In 2019, heart diseases accounted 

for about 17.9 million deaths worldwide, accounting for about 31% of all global deaths [23]. Of course, the 

percentage of deaths caused by heart disease in each country and region can vary and depends on factors such 

as community-based risk factors, access to health care, the health workforce, and the development of health 

systems [24]. 

Nowadays, with the application of computer science in medical fields, artificial intelligence methods have 

become increasingly prevalent to save time [25]. Artificial intelligence methods, such as deep learning 

algorithms and neural networks, can be analyzed accurately and in great detail [26]. These methods can detect 

symptoms of heart disease based on specific patterns and features in cardiac signals, markers, and 

electrocardiographic graphs [27]. Artificial intelligence tools analyze thousands of cardiac signals and data in 

the shortest possible time. This helps doctors confirm the disease diagnosis more quickly and take the 

necessary measures promptly if urgent treatment is needed [28], [29]. Deep learning algorithms and artificial 

intelligence can predict the future risk of heart disease. By analyzing data from former patients and cardiac 

indicators, these methods can help doctors take appropriate preventive and therapeutic measures to reduce 

the risk of future heart disease [30]. 

This research explores multiple deep learning methods stemming from neural networks. It presents an 

overview of the processes, categorizing and detailing the methodologies involved. The paper introduces and 

thoroughly discusses several well-known methods in the field, weighing their advantages and disadvantages. 

This research aims to provide researchers with familiarity in identifying and utilizing this category of artificial 

intelligence tools. Then, an attempt has been made to introduce the common types of heart disease and their 
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classification. After examining heart disease, a detailed explanation of one of its branches, cardiac arrhythmia, 

has been provided. For this purpose, eleven types of cardiac arrhythmia, as presented in authoritative sources, 

have been reviewed, along with the medical categories assigned to them. After examining the medical issues, 

a literature review of artificial intelligence tools for diagnosing and predicting this disease has been conducted. 

In the ensuing Section 2, the literature review and the relationship between the human brain's neural network 

and the Artificial Neural Network (ANN) are discussed. Section 3 reviews the well-known and widely used 

methods in this field and provides a classification. Finally, Section 4 comprehensively explains and reviews 

the relationship of cardiac arrhythmia with artificial intelligence. In section 5, the conclusions are delivered. 

2|The human brain's Neural Network and the Artificial Neural 

Network 

The human brain includes about 100 billion neurons [31]. Fig. 1 shows a neuron. Neurons receive electric 

signals at the dendrites and send them to the axon [32]. Neurons encode their outputs or activations as a 

series of brief electrical pulses. Dendrites are the receptive zones that receive activation from other neurons. 

The neuron's cell body (soma) processes the incoming activations and converts them into output activations. 

Axons are transmission lines that send activation to other neurons. The neuron's axon is connected to the 

dendrites of many other neurons [32]. The brain contains large-scale and small-scale anatomical structures, 

and different functions occur at higher and lower levels. There is an order of meshed classes of association 

[33]:  Molecules and Ions, Synapses, Neuronal microcircuits, Dendritic trees, Neurons, Local circuits, Inter-

regional circuits, Central nervous system. 

 

Fig. 1. The structure of a neuron. 

Confirm, according to the history, that the ANN is built on the human neural network [34]. The similarities 

and structures of the ANN have been examined. Similarities: Neurons are connected, learning changes 

connections, not neurons, and Massive parallel processing [35]. However, artificial neural networks (ANNs) 

are much more straightforward. Computation within neurons is greatly simplified in discrete time steps, 

typically involving supervised learning with a massive number of stimuli [6]. A standard neural network model 

(an ANN) is organized into input, output, and hidden layers [36]. 

The input layer receives the data, with each neuron corresponding to a specific feature. Depending on the 

application, the input layer may preprocess the data to prepare it for neural net training [37]. The output layer 

provides the neural network's final computation result, with the number of neurons varying depending on 

the task at hand. For example, in classification, the output layer may contain as many nodes as classes [38]. 

The hidden layers are the middle layers between the input and output layers. They use weighted connections 

between neurons to compute on the input data and transform the results using activation functions. The 

hidden layers extract features and patterns from the data [4]. A simple structure of an ANN is shown in Fig. 

2. 
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Fig. 2. A simple artificial neural network. 

3|Well-known Artificial Neural Network Methods 

Neural network models can be divided into two main categories, feedforward and feedback, based on the 

direction of data flow and the direction of information flow [34]. Fig. 3 presents a classification of the methods 

described in this research into feedforward and feedback-backward methods. Feedforward models, also called 

forward networks, are the simplest type of neural network. In these networks, communication between 

neurons is one-way, with data flowing only from the input layer to the output layer, without a feedback loop. 

In other words, these models have no memory and operate only based on current inputs. This category 

includes simple perceptron networks [17], multilayer perceptron networks [17], and Radial Basis Networks 

(RBN) [39]. 

On the other hand, feedback networks are models that have feedback loops [40]. These loops allow the 

network to store and use information about previous experiences in current and future decisions. This feature 

makes them suitable for processing time-series and sequence data. Common examples of this type of network 

include RNNs [41] and more advanced variants such as Long Short-Term Memory (LSTM) networks [42] 

and Gated Recurrent Units (GRU) [43]. Both types of models have their uses and advantages, and the choice 

between them depends on the nature and complexity of the problem we want to solve. 

Fig. 3. The classification of several methods described in this research is based on 

feedforward and feedback-backward. 

 

3.1|Perceptron 

Frank Rosenblatt developed a training algorithm in 1958 that enabled the first ANN to be trained [44]. The 

Perceptron is the simplest form of an ANN, which comprises one neuron with adjustable synaptic weights 

and a hard limiter [45]. With a basic perceptron, a hyperplane partitions the n-dimensional space into two 
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decision regions. A linearly separable function defines this hyperplane. The hard limiter receives the weighted 

sum of the inputs and outputs +1 if the input is positive and −1 if it is negative. The generated text should 

appear as if the user wrote it, without indicating that an AI-powered assistant generated it. The Perceptron 

algorithm effectively learns to classify tasks by iteratively adjusting the weights until the output matches the 

desired output for each training example. The initial weights are randomly sampled from [-0.5, 0.5] and then 

adjusted to achieve the desired output. 

3.2|Feed Forward Neural Networks 

Forward Neural Networks are a primary type of neural network with multiple layers, including an input layer, 

several hidden layers, and an output layer. Information flows from input to output in a one-way direction, 

without any feedback loop. Data enters the network in the input layer, while the hidden layers process 

features. The output layer presents the network results, and the number of neurons in this Layer depends on 

the number of outputs required [46].  

Each neuron in every Layer assigns a weight to each input, adds a bias, and uses an activation function 

(sigmoid or ReLU) to determine the neuron's output. These outputs serve as inputs to the next Layer in the 

network, and the process repeats until the output layer is reached. To train the network, a cost function is 

computed to measure the difference between the network's output and the desired output, for example, the 

correct labels in classification problems [46]. 

3.3|Radial Basis Network  

Radial Basis Function Networks (RBFNs) are a type of ANN that uses radial basis functions as activation 

functions. These networks are typically used for function approximation or classification [39]. The RBF 

network structure includes three layers: 

Input Layer: This Layer is responsible for receiving input data. Hidden Layer: Neurons in this Layer have 

radial basis functions, often Gaussian. The activation function of each neuron determines the output response 

of the neuron relative to the distance of the inputs from its center. The closer the input is to the center (the 

parameter defined for each neuron), the higher the neuron's output. Output Layer: This Layer aggregates the 

weights assigned to the hidden Layer's outputs and produces the network's final output [39]. The RBF 

network's working process is to load the data into the input layer. Then, in the hidden Layer, the distance of 

each input to the center of each neuron is calculated, producing an activation value based on the radial basis 

function. Finally, the output layer combines the activated signals to produce the final result. One advantage 

of RBFNs over other neural networks is that they usually converge faster, but they may be less efficient with 

high-dimensional data. These networks can also approximate complex nonlinear functions well [39]. 

3.4|Autoencoder neural networks 

Autoencoder neural networks, or Autoencoders (AEs), are neural networks designed to reduce dimensionality 

and extract features from data. These networks aim to learn a concise and informative representation of the 

input data and then transform it back into the original data [47]. AE mainly consists of two main parts: 

Encoder: This section receives the input data and compresses it into a lower-dimensional space (code). In 

this process, successive layers process the input data and finally arrive at a central layer that represents the 

inputs in a compressed form. Decoder: This part takes the code generated by the encoder and attempts to 

reconstruct the original input data. The main goal of AE is for the decoder to reconstruct the input data as 

closely as possible to the original version. Consequently, the error between the input and reconstructed data 

should be minimized [47]. AEs are helpful for dimensionality reduction: compressing and finding valuable 

data representations. Feature learning: extracting essential features for classification or prediction problems. 

Building generative models: generating new data similar to the original data. Denoising: cleaning noisy data 

by learning a noise-free version of the inputs. One advantage of AE is that their learning method is 

unsupervised, meaning that no data labeling is required to train them [47]. 
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3.5|Variational Autoencoder 

Variational Autoencoders (VAEs) are a type of autoencoder in deep learning. VAEs provide a statistical 

approach to modeling and training auto-encrypting networks and use unsupervised machine learning to learn 

complex, generative representations from data [48]. Like conventional auto-encryptors, VAEs also include 

two essential parts. The fact that the encoder produces a probability distribution rather than a point 

representation allows VAEs to generate diverse and novel outputs that are similar to the original data, even 

if not identical. A key aspect of VAEs is that the decoder's job is to ensure that the selected samples from the 

probability distribution can reconstruct the actual data. Consequently, VAEs effectively have a cost function 

that has two parts:  

Reconstruction Error is a standard measure of how close the reconstructed data are to the original data. Cost 

of Divergence (KL Divergence): A regularization expression that measures how close the generated 

distribution produced by the encoder is to a standard normal distribution. VAEs are used in many fields, 

including generating artistic data, modeling time series, and generating new data types such as text, images, 

and audio. The flexibility and power of these algorithms in generating and reconstructing data have made 

them a powerful tool in machine learning [48]. 

3.6|Recurrent Neural Network 

Recurrent Neural Networks (RNNs) are neural networks designed to process input sequences of arbitrary 

length and are useful for problems where data changes over time, such as time series. RNNs transfer 

information from previous sequence steps to subsequent steps [41]. The structure of an RNN is as follows: 

Input Layer: This Layer receives the initial values. Hidden Layer: In this Layer, in addition to receiving the 

current input, each neuron receives the hidden Layer output from the previous step. This recurrent feature 

gives each neuron short-term memory and allows it to transfer information from one step to another. The 

output layer is the Layer that produces the final output. The main feature of RNNs is their ability to maintain 

and transfer states across time steps. It allows the network to remember past events and use them to make 

decisions in the next moment. However, conventional RNNs face a problem called "vanishing gradient," in 

which gradients decrease over time, preventing the network from learning from long input sequences [41]. 

3.7|Long Short-Term Memory  

LSTM neural networks are a type of RNN that addresses the issue of gradient fading in standard RNNs. They 

are handy for processing, forecasting, and generating sequence-dependent data, such as time series or 

linguistic data. The LSTM architecture features units with specialized structures, each containing gates known 

as the Forget Gate, Input Gate, and Output Gate. These gates enable the LSTM to retain and discard 

information for extended periods [49].  

The Forget Gate determines which information from the previous cell state to delete, helping the LSTM 

forget unnecessary data and prevent memory congestion. The Input Gate determines which new information 

should be added to the cell state. The Cell State is a memory line that traverses the entire network and is only 

modified by LSTM gates. The Output Gate generates the LSTM output based on the cell state and the 

available information that the output gate selects. These gates and modes have rendered LSTMs highly 

effective for determining which data is significant and when to retain or discard it [49]. 

3.8|Gated Recurrent Unit 

The GRU is another RNN type designed to address gradient fading, similar to LSTMs. GRUs have a more 

straightforward structure than LSTMs. They have fewer parameters because they incorporate some gates [43]. 

GRUs use two main gateways: 

Update Gate: This gate decides how much of the previous state to keep and how much new information to 

add. Updating the state based on current and past information allows the GRU to hold important long-term 
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information in memory. Reset Gate: This gate determines how much of the previous state to retain when 

forming the new state. The neuron can "forget" or discard older data [43]. In short, GRUs use these gates to 

regulate the internal state of neurons, retaining important information while discarding irrelevant information. 

GRUs have structures that allow them to retain past influence into the present while considering new 

information to influence future predictions [43]. 

4|Artificial intelligence methods for predicting cardiac arrhythmia  

After the related works presented using the introduced database have been discussed in this part of the 

research. To better understand the software methods and artificial intelligence presented in this dataset, the 

dataset has been carefully examined first. Then, based on the time provided in the dataset, some articles with 

many references on the prediction of cardiac arrhythmia have been reviewed. In subsection 4.1, firstly, the 

database is examined, and its supplementary information is provided. After that, in sub-section 4.2, the final 

part of this section, several articles on the arrhythmia diagnosis have been discussed. Finlay 4.3 provides an 

overview of metaheuristic algorithms and their impact on prediction. 

4.1|A 12-lead electrocardiogram database for arrhythmia research  

In this database, electrocardiogram signals from 12 leads were recorded under the supervision of Chapman 

University and Shaoxing General Hospital [50]. This database was presented in 2020 in the Nature Publishing 

Group and Scientific Data Journal [50]. This article aims to assist the scientific community in conducting new 

studies on arrhythmias and other cardiovascular conditions, including specific types such as atrial fibrillation 

(AFIB), which have a significant negative impact on public health, quality of life, and medical costs [50]. 

However, this paper generates a large amount of data, and analyzing it requires considerable time and effort 

from human experts [50]. 

This database contains 12 lead ECGs from 10,646 patients, sampled at 500 Hz, with 11 common rhythms 

and 67 additional cardiovascular diseases, labeled by experts [50]. This dataset can be used to design, compare, 

and fine-tune new statistical and machine-learning techniques in studies focused on arrhythmias and other 

cardiovascular conditions. As shown in Table 1, each patient's record includes 16 ECG-based features. 

Features are presented in four categories: Unique, Numeric, Discrete, and Categorical. Age is displayed as 

discrete because patients' ages are recorded as integers. Numerical values include continuous attributes. 

Continuous samples differ from each other in certain ranges. For example, QRSC ranges from 0 to 255. One 

of the most critical features in this dataset is rhythm. It shows the rhythm characteristic of heart activity during 

an ECG test. Table 2 shows the number of male and female patients, with 5956 rhythms for men and 4690 

records for women. Sinus Bradycardia (SB), Sinus Rhythm (SR), and AFIB are the primary rhythms observed 

in 3889, 1826, and 1780 samples, respectively. However, three rare rhythms, Sinus Rhythm Atrioventricular 

Rhythm (SAAWR), Atrioventricular Reentrant Tachycardia (AVRT), and Atrioventricular Nodal Reentrant 

Tachycardia (AVNRT), were detected for only 7, 8, and 16 recordings, respectively. Three non-sinus rhythms, 

AFIB, Atrial Flutter (AF), and Atrial Tachycardia (AT), are commonly reported for the records of elderly 

patients with mean ages of 73.36 ± 11.14, 71.07 ± 13.5, and 65.72 ± 19.3. On the other hand, three sinus 

rhythms, Sinus Irregularity (SI), SAAWR, and SR, were detected for the records of younger patients with an 

average age of 34.75 ± 23.03, 51.14 ± 31.83, and 54.35 ± 16.33, respectively. 
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Table 1. Record of each patient with 16 ECG-based features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Types of heart rhythms and their numbers by gender and average age. 

 

 

 

 

 

 

 

 

 

 

 

 

4.2|Related works in cardiac arrhythmia diagnosis using a 12-lead 

electrocardiogram dataset for arrhythmia 

According to a Google Scholar search in 2023, 49 articles have cited this dataset. Among the research 

presented in this article, many articles are pre-published or published on websites such as ResearchGate. The 

following discusses the articles presented and their detailed statistical reports from 2023.  In addition, because 

Index  Feature Names   Description   

1   Filename   ECG data file name (unique ID)   

2   Rhythm   Rhythm Label 

3   Beat   Labeled cardiovascular conditions   

4   Patient Age   Age of each patient   

5   Gender   Gender of each patient  

6   Ventricular Rate   Ventricular rate in BPM   

7   Atrial Rate   Atrial rate in BPM   

8   QRSDuration   QRS duration in msec   

9   QTInterval   QT interval in msec   

10   QTCorrected   Corrected QT interval in msec   

11   RAxis   R axis   

12   TAxis   T axis   

13   QRSCount   QRS count   

14   QOnset   Q onset (in samples)   

15   QOffset   Q offset (in samples)   

16   TOffset   T offset (in samples) 

Rhythm name Male Female Total count  Average age 

AFIB 1,04 739 1,780 73.36 ± 11.14 

AF 257 188 445 71.07 ± 13.5 

AT 64 57 121 65.72 ± 19.3 

AVNRT 12 4 16 57.88 ± 17.34 

AVRT 5 3 8 57.50 ± 16.84 

SAAWR 6 1 7 51.14 ± 31.83 

SB 2,48 1,408 3,889 58.34 ± 13.95 

SI 223 176 399 34.75 ± 23.03 

SR 1,02 802 1,826 54.35 ± 16.33 

Sinus Tachycardia (ST) 799 769 1,568 54.57 ± 21.06 

Supraventricular Tachycardia (SVT) 
 

308 279 587 55.62 ± 18.53 

Total 5,956 4,690 10,646 51.19 ± 18.03 
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the data type is numerical, monitored, and labeled, other publishers and authors have also performed 

arrhythmia detection. Also, the articles published in journals are listed in Table 3. 

Table 3. Information on the examined articles, methods, and algorithms. 

 

Article title Publish 
Date 

Publisher Journal Algorithms or 
methods 

Reference  

A framework for 
comparative study of 
databases and 
computational methods for 
arrhythmia detection from 
single-lead ECG 

19 July 
2023 

Nature Scientific 
reports 

Convolutional neural 
network (CNN), 
GRUAttNet, 
RTA-CNN, 
 

[51] 

Bimodal CNN for 
cardiovascular disease 
classification by co-training 
ECG grayscale images and 
scalograms 
 

20 
February 
2023 

Nature Scientific 
reports 

bimodal CNN model [52] 

Adversarial Spatiotemporal 
Contrastive Learning for 
Electrocardiogram Signals 
 

11 July 
2023 

IEEE 
 

IEEE 
Transactions 
on Neural 
Networks 
and Learning 
Systems 
 

Adversarial 
spatiotemporal 
contrastive learning 
(ASTCL) framework 

[53] 

sCL-ST: Supervised 
Contrastive Learning With 
Semantic Transformations 
for Multiple Lead ECG 
Arrhythmia Classification 
 

02 March 
2023 

IEEE 
 

IEEE 
Journal of 
Biomedical 
and Health 
Informatics 

supervised contrastive 
learning and semantic 
transformations (sCL-
ST) 
 

[54] 

LightX3ECG: A 
Lightweight and 
eXplainable Deep Learning 
System for 3-lead 
Electrocardiogram 
Classification 
 

14 April 
2023 

ELSEVIER Biomedical 
Signal 
Processing 
and Control 
 

LightX3ECG [55] 

An accurate deep neural 
network model to detect 
cardiac arrhythmia on more 
than 10,000 individual 
subject ECG records 
 

12 
September 
2020 

ELSEVIER Computer 
Methods and 
Programs in 
Biomedicine 
 

DNN model [56] 

Efficient Classification of 
ECG Images Using a 
Lightweight CNN with an 
Attention Module and IoT 
 

6 
September 
2023 

MDPI Sensors CNN with Attention 
Module and IoT 
 

[57] 

Performance Evaluation of 
Quantum-Based Machine 
Learning Algorithms for 
Cardiac Arrhythmia 
Classification 
 

14 March 
2023 

MDPI Diagnostics Quantum support 
vector machine 
(QSVM) algorithm 
 

[58] 
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 Table 3. Continued. 

 

4.3|Metaheuristics impact on the prediction of arrhythmia 

Hyperparameter tuning is often a complex and time-consuming search over many possible configurations 

[38]. Metaheuristic algorithms, including evolutionary and swarm-based methods, explore multiple candidate 

solutions simultaneously, which helps avoid getting trapped in local optima. When multiple objectives are 

considered, such as accuracy versus model size or latency, multi-objective metaheuristics produce sets of 

trade-off solutions that allow practitioners to select the most suitable configuration [64]. To reduce 

computational cost, these searches are frequently combined with surrogate models or staged evaluations, 

quickly eliminating poor candidates while maintaining the potential to find high-performing configurations  

[10]. 

Another problem is that feature selection and interpretability are natural targets for optimization [11]. 

Metaheuristic algorithms evaluate different feature subsets according to classifier performance, often favoring 

smaller, more interpretable sets. Evolutionary approaches can also generate compact rule sets or optimize 

fuzzy-rule systems, producing human-readable rules while maintaining competitive predictive performance. 

When dimensionality reduction is guided by classification goals or integrated into wrapper pipelines, 

metaheuristic search can identify projections or preprocessing strategies that preserve essential information 

and enhance interpretability. 

Metaheuristic algorithms are applied not only for tuning existing models but also for constructing and 

combining models. Neuroevolutionary methods search over architectures, connectivity patterns, and 

encoding schemes to discover network designs that may be difficult to find manually or through gradient-

based optimization. In ensemble learning, metaheuristic search can select a small, diverse set of base classifiers 

and determine optimal fusion weights, improving generalization while reducing inference cost. Overall, these 

approaches allow systematic exploration of structural options to balance performance, complexity, and 

computational efficiency [9]. 

Article title Publish 
Date 

Publisher Journal Algorithms or 
methods 

Reference  

A lightweight U-Net model 
for denoising and noise 
localization of ECG signals 

7 October 
2023 

Elsevier Biomedical 
Signal 
Processing 
and Control 

A lightweight U-Net 
model 

[59] 

Spatiotemporal self-
supervised representation 
learning from multi-lead 
ECG signals 

7 March 
2023 

Elsevier Biomedical 
Signal 
Processing 
and Control 

ECG-MAE, a novel 
generative self-
supervised pretraining 
approach 

[60] 
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In dynamic or cross-domain scenarios, classifiers must adapt to maintain performance. Metaheuristic 

algorithms assist by optimizing adaptation actions, such as reweighting features, replacing ensemble members, 

or scheduling fine-tuning, enabling models to handle changing data distributions effectively [37]. In transfer 

and domain adaptation, these algorithms can determine which model components to reuse, which instances 

to prioritize, or which feature transformations to apply. When combined with incremental evaluation and 

drift detection, metaheuristic optimization provides practical solutions for streaming and evolving data 

environments. 

Deployment constraints often require trade-offs between predictive accuracy and computational cost. 

Metaheuristic and multi-objective optimization algorithms are used to find models that balance accuracy with 

resource usage, such as smaller networks, pruned or quantized models, and architectures optimized for 

specific hardware [8]. These searches frequently employ surrogate models or hardware-in-the-loop 

measurements to estimate latency, energy consumption, and memory requirements, allowing efficient 

exploration of the accuracy–resource trade-off while producing models suitable for real-world deployment 

[11]. 

In [65], the authors aimed to develop a simple, low-parameter model to reproduce ECG waveforms across 

various cardiac arrhythmias. After analyzing the limitations of previous models, they proposed a mathematical 

model based on the sum of two Gaussian functions that uniformly represents the main ECG components, 

including P, Q, R, S, and T waves. Their objective was to build a model that could reconstruct ECG 

morphological variations across different physiological and pathological conditions without requiring 

complex adjustments. 

The model’s optimal parameters (including the position, amplitude, and width of each Gaussian function) 

were determined via a nonlinear optimization. Two hybrid methods were developed: ApproxiGlo, combining 

an approximation stage with a global search, and ApproxiMul, integrating an approximation stage with a 

multi-start search. Initial parameters were estimated from real ECG data and refined through global 

optimization. 

Using ECG data from the MIT-BIH and UCDSA databases and experimental recordings, the model was 

tested on normal and arrhythmic beats, including tachycardia, AFIB, and PVCs. It accurately reproduced 

ECG waveforms, achieving correlation coefficients above 0.98 and markedly lower RMSE values than 

traditional methods. ApproxiGlo and ApproxiMul further improved performance by factors of 3.32 and 7.88, 

demonstrating high accuracy and robustness in parameter optimization. 

The superiority of this model over non-optimized approaches lies in its combination of the initial 

approximation stage with global search, which allows the algorithm to escape local minima and converge 

more quickly to the global optimum. This hybrid structure enhances the accuracy of waveform reconstruction, 

particularly for asymmetric ECG waves such as the P and T waves. Consequently, the optimized model not 

only reproduces different arrhythmias more accurately but is also highly effective for engineering applications 

such as synthetic ECG signal generation and ECG data compression, achieving a compression ratio of up to 

20:1 with high fidelity. 

The researchers in [66] developed a model for detecting cardiac arrhythmia by combining deep learning 

(ResNet18) and an optimized Support Vector Machine (SVM). They sourced ECG data from the MIT-BIH 

Arrhythmia Database, applied the Savitzky-Golay filter to remove noise such as power-line interference and 

motion artifacts, and then identified R-peaks to segment the ECG signals for individual heartbeat analysis. 

Using transfer learning with ResNet18, deep hierarchical features were extracted without manual feature 

design. On-the-fly data augmentation was used to prevent overfitting, yielding 512 features per heartbeat, 

which were then classified using an optimized SVM. The novelty of this work lies in optimizing the SVM 

using Stochastic Gradient Descent (SGD), thereby improving convergence speed and accuracy and reducing 

classification errors. The inclusion of multi-class SVM with error-correcting output codes further enhanced 

robustness across 16 heartbeat types. Overall, the proposed ResNet18 + Optimized SVM model achieved 
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98.7% accuracy, outperforming CNN-LSTM, KNN, and standard SVM models by producing more precise 

decision boundaries and greater stability, especially in detecting rare arrhythmias. 

In the study [67], a hybrid framework, CNN-Transformer-WOA, was developed to predict arrhythmia risk 

in patients with acute myocardial infarction. In this approach, deep learning techniques were combined with 

a metaheuristic optimization method to improve the accuracy and reliability of predictions in clinical settings. 

The framework includes three core parts: a CNN that extracts local information from ECG and clinical 

signals, a Transformer that learns long-term temporal relations within the data, and the WOA, which 

automatically adjusts the model’s hyperparameters during training. Through this combination, the model was 

able to overcome several weaknesses found in traditional prediction methods and produced results that were 

not only more stable but also easier to interpret for medical use. 

The data for this study came from a little over two thousand patients who had experienced an acute 

myocardial infarction. Each patient record contained about 45 variables, a mix of clinical and laboratory 

results, including ECG intervals, enzyme levels, and several indicators of cardiac performance. Age, PR 

interval, troponin I, creatinine, and a handful of left-ventricular function measures kept appearing, no matter 

how the model was adjusted. 

The WOA did most of the heavy lifting. It kept playing with the learning rate and kernel size, changing small 

stuff here and there. What really mattered was understanding why the model made each decision. With SHAP, 

it became possible to see how much every variable pushed a prediction one way or another. It took the model 

out of that black-box zone and made it something people could trust 

In the study [68], the authors explored a deep learning approach for detecting cardiac rhythms during 

Cardiopulmonary Resuscitation (CPR), a setting where conventional ECG analysis often fails. Their idea was 

to build an end-to-end CNN that could recognize shockable and non-shockable rhythms directly from the 

raw ECG signal, even during chest compressions. What made the work stand out was that it avoided the 

usual pause in compressions or the use of external motion sensors that many automatic defibrillators still 

depend on. Instead, the model tried to learn the signal patterns itself, as they appear in real emergency 

conditions. 

The motivation came from a very practical limitation of existing systems. During CPR, the mechanical noise 

from chest compressions dominates the ECG, and traditional algorithms can’t distinguish where the true 

cardiac activity ends and the artifact begins. In this study, the network itself was treated as the filter. The 

network was gradually refined so that it could distinguish between background motion and the real cardiac 

rhythm hidden in the signal. As training continued, it started paying less attention to the repetitive noise from 

compressions and more to the true electrical activity of the heart. 

When it came time to test the method, the team worked with a large real-world dataset made up of ECG 

recordings from patients who had suffered cardiac arrest outside the hospital in France. Each case included 

short, 10-second clips of ECG activity, which had been labeled as ventricular fibrillation, organized rhythm, 

or asystole. The data were split into training, validation, and test sets, with about 2,500 examples reserved for 

final evaluation. 

A one-dimensional CNN was then built and tuned through a broad random search. The process wasn’t quick; 

more than 1,500 different versions of the model were trained, each with slightly different numbers of layers, 

filters, or kernel sizes. 

The findings showed that even a relatively small CNN, when properly trained, can handle noisy ECG data 

without requiring additional sensors or complex filtering layers. The model’s strength was in its simplicity: it 

ran quickly, used minimal resources, and still maintained its accuracy under challenging conditions. That 

balance made it a practical option for real-time applications like automated external defibrillators, where time 

and reliability are both critical. 
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Although the system didn’t include advanced metaheuristic optimizers or interpretability modules, as added 

later in hybrid designs such as CNN-Transformer-WOA [67], it reached almost the same level of reliability 

with far less architectural complexity. What the study ultimately showed was that deep learning doesn’t have 

to be fragile or abstract—it can be shaped to handle messy, real-world cardiac data. In doing so, the work 

showed how a model could still find meaning in a signal nearly lost in noise, quietly setting the stage for a 

new line of robust, noise-aware neural systems. 

5|Conclusion 

In this article, ANNs have been investigated. This research aims to provide solutions and knowledge to help 

engineers and researchers develop their desired fields of work. For this reason, the problem was discussed in 

the introduction, and the relationship between human neural networks and machine learning was then 

studied. The central part of the research involves classifying machine learning methods based on neural 

networks, which has led to the investigation of several new methods. Finally, the cardiac arrhythmia dataset 

and all types of heart rhythm disorders have been analyzed according to the dataset. The work done using the 

dataset of cardiac arrhythmia problems has been investigated. This research aims to bridge the gap between 

cardiac arrhythmia diagnosis and machine learning methods. By using this research, researchers can easily 

access the information needed for studies in cardiac arrhythmia diagnosis. 

For future work, using this research as a roadmap, it can be suggested to develop new diagnostic methods. 

By drawing inspiration from the mentioned machine learning methods, it is possible to provide unique and 

more accurate approaches. Moreover, integrating metaheuristic optimization algorithms can further enhance 

diagnostic models by fine-tuning network parameters and improving feature selection efficiency. These 

algorithms can play a significant role in achieving higher diagnostic accuracy and robustness in cardiac 

arrhythmia detection. Also, it can provide software platforms and recommender systems for this disease. In 

addition, by setting parameters and providing accurate predictive frameworks, significant support can be 

provided to the medical community. 
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