Conjectures of Computer Vision Technology (CVT) on Industrial Information Management Systems (IMSs): A Futuristic Gaze

Authors

Keywords:

Inventory management, Computer vision, Industrial process, Machine learning

Abstract

Computer Vision Technology (CVT) has emerged as a promising tool for enhancing industrial Information Management Systems (IMSs) by enabling machines to interpret and understand visual information. This study explores the potential impact of CVT on IMSs in the industrial sector, focusing on its conjectures and implications for the future. The rapid advancement of CVT has raised expectations for its potential applications in industrial IMSs. However, there is a lack of research on the specific conjectures of CVT in this context, and the implications of its integration on industrial processes and operations remain unclear. This study seeks to address this gap by examining the potential benefits and challenges of CVT in industrial IMSs and by proposing strategies for its successful implementation. This study employs a qualitative research approach, drawing on existing literature and related studies to analyze the conjectures of CVT on industrial IMSs. The research methodology includes a review of relevant literature, interviews with industry experts, and analysis of real-world applications of CVT in industrial settings. The findings are synthesized to identify key trends and insights on the potential impact of CVT on industrial IMSs. The findings revealed that CVT has the potential to revolutionize industrial IMSs by enabling real-time monitoring, analysis, and decision-making based on visual data. The technology can enhance efficiency, accuracy, and safety in industrial processes, leading to improved productivity and cost savings. However, challenges such as data privacy, security, and integration with existing systems need to be addressed for the successful implementation of CVT in industrial IMSs. With careful planning and strategic implementation, CVT can pave the way for a more efficient, intelligent, and sustainable future for industrial IMSs.

References

‎[1] ‎ Ottakath, N., Al-Ali, A., Al-Maadeed, S., Elharrouss, O., & Mohamed, A. (2023). Enhanced ‎computer vision applications with blockchain: a review of applications and opportunities. Journal of ‎king saud university - computer and information sciences, 35(10), 101801. DOI:10.1016/j.jksuci.2023.101801‎

‎[2] ‎ Peng, Y., Dong, M., & Zuo, M. J. (2010). Current status of machine prognostics in condition-based ‎maintenance: a review. International journal of advanced manufacturing technology, 50(1–4), 297–313. ‎DOI:10.1007/s00170-009-2482-0‎

‎[3] ‎ Abosuliman, S. S., & Almagrabi, A. O. (2021). Computer vision assisted human computer interaction ‎for logistics management using deep learning. Computers and electrical engineering, 96, 107555. ‎DOI:10.1016/j.compeleceng.2021.107555‎

‎[4] ‎ Di Capua, M., Ciaramella, A., & De Prisco, A. (2022). Machine learning and computer vision for the ‎automation of processes in advanced logistics: the integrated logistic platform (ILP) 4.0. Procedia ‎computer science, 217, 326–338. DOI:10.1016/j.procs.2022.12.228‎

‎[5] ‎ Parikh, H., Saijwal, I., Panchal, N., & Sharma, A. (2022). Autonomous mobile robot for inventory ‎management in retail industry. Futuristic trends in networks and computing technologies: select proceedings ‎of fourth international conference on FTNCT 2021 (pp. 93-103). Springer Nature Singapore. DOI: ‎‎10.1007/978-981-19-5037-7_7‎

‎[6] ‎ Cao, K., Chen, Y., Gao, S., Zhang, H., & Dang, H. (2022). Multi‐robot formation control based on CVT ‎algorithm and health optimization management. Applied sciences, 12(2), 755. DOI:10.3390/app12020755‎

‎[7] ‎ Tikwayo, L. N., & Mathaba, T. N. D. (2023). Applications of industry 4.0 technologies in warehouse ‎management: a systematic literature review. Logistics, 7(2), 24. DOI:10.3390/logistics7020024‎

‎[8] ‎ Ikpe AE, Ohwoekevwo JU, & Ekanem II. (2024). Overview of the role of medical robotics in day-to-day ‎healthcare services: a paradigm shift in clinical operations. Ibom medical journal, 17(2), 192–203. ‎DOI:10.61386/imj.v7i2.422‎

‎[9] ‎ Hassaballah, M., & Hosny, K. M. (2019). Recent advances in computer vision. In Studies in computational ‎intelligence (pp. 1-84). Springer. https://link.springer.com/book/10.1007/978-3-030-03000-1‎

‎[10] ‎ Ogbeyemi, A., Ogbeyemi, A., & Zhang, W. (2024). Integrating human factors into the distribution ‎model of goods and fast-moving consumer goods for effective inventory control. International journal ‎of engineering business management, 16, 18479790241266350. DOI:10.1177/18479790241266352‎

‎[11] ‎ Bi, Y., Xue, B., Mesejo, P., Cagnoni, S., & Zhang, M. (2023). A survey on evolutionary computation for ‎computer vision and image analysis: past, present, and future trends. IEEE transactions on evolutionary ‎computation, 27(1), 5–25. DOI:10.1109/TEVC.2022.3220747‎

‎[12] ‎ Suma, K. G., Patil, P., Sunitha, G., Mantri, V. P., & Kale, N. D. (2024). Computer vision and its ‎intelligence in Industry 4.0. In Machine learning techniques and industry applications (pp. 119–142). IGI ‎Global. DOI: 10.4018/979-8-3693-5271-7.ch007‎

‎[13] ‎ Verma, N. K., Sharma, T., Rajurkar, S. D., & Salour, A. (2016). Object identification for inventory ‎management using convolutional neural network. 2016 ieee applied imagery pattern recognition workshop ‎‎(AIPR) (pp. 1–6). IEEE. DOI: 10.1109/AIPR.2016.8010578‎

‎[14] ‎ Javaid, M., Haleem, A., Singh, R. P., Rab, S., & Suman, R. (2022). Exploring impact and features of ‎machine vision for progressive industry 4.0 culture. Sensors international, 3, 100132. ‎DOI:10.1016/j.sintl.2021.100132‎

‎[15] ‎ Sarkar, B., Takeyeva, D., Guchhait, R., & Sarkar, M. (2022). Optimized radio-frequency identification ‎system for different warehouse shapes. Knowledge-based systems, 258, 109811. ‎DOI:10.1016/j.knosys.2022.109811‎

‎[16] ‎ Mohamed, M., & Abdellah, E. (2021). Smart company system using hybrid nomenclature of neural ‎network. International journal of advanced computer science and applications, 12(4), 623–631. ‎DOI:10.14569/IJACSA.2021.0120478‎

‎[17] ‎ Vaka, D. K. (2024). Integrating inventory management and distribution: a holistic supply chain ‎strategy. International journal of managing value and supply chains, 15(2), 13–23. ‎DOI:10.5121/ijmvsc.2024.15202‎

‎[18] ‎ Mithas, S., Chen, Z. L., Saldanha, T. J. V., & De Oliveira Silveira, A. (2022). How will artificial ‎intelligence and Industry 4.0 emerging technologies transform operations management? Production ‎and operations management, 31(12), 4475–4487. DOI:10.1111/poms.13864‎

‎[19] ‎ Yousif, I., Burns, L., El Kalach, F., & Harik, R. (2024). Leveraging computer vision towards high-‎efficiency autonomous industrial facilities. Journal of intelligent manufacturing, 1–26. DOI:10.1007/s10845-‎‎024-02396-1‎

‎[20] ‎ Qamar, R., & Zardari, B. A. (2024). Application of computer vision in manufacturing. In Machine vision ‎and industrial robotics in manufacturing (pp. 36–56). CRC Press. ‎https://www.taylorfrancis.com/chapters/edit/10.1201/9781003438137-3/application-computer-vision-‎manufacturing-roheen-qamar-baqar-ali-zardari

‎[21] ‎ Agarwal, V., & Ankolikar, S. (2022). Deployment of RFID sensors in supply chain management – a ‎review. Journal of mechatronics and artificial intelligence in engineering, 3(2), 47–64. ‎DOI:10.21595/jmai.2022.22565‎

‎[22] ‎ Ivanov, D., Tang, C. S., Dolgui, A., Battini, D., & Das, A. (2021). Researchers’ perspectives on Industry ‎‎4.0: multi-disciplinary analysis and opportunities for operations management. International journal of ‎production research, 59(7), 2055–2078. DOI:10.1080/00207543.2020.1798035‎

‎[23] ‎ Odainic, A. (2023). Implementation of computer vision technologies in the business processes of ‎FMCG companies. Technoeconomics: an international journal, 2(3), 16–27. ‎https://technoeconomics.spbstu.ru/userfiles/files/Issues/6/2-Odaynik.pdf

‎[24] ‎ Mondol, E. P. (2021). The impact of block chain and smart inventory system on supply chain ‎performance at retail industry. International journal of computations, information and manufacturing (IJCIM), ‎‎1(1). DOI:10.54489/ijcim.v1i1.30‎

‎[25] ‎ Rejeb, A., Keogh, J. G., Wamba, S. F., & Treiblmaier, H. (2021). The potentials of augmented reality in ‎supply chain management: a state-of-the-art review. Management review quarterly, 71(4), 819–856. ‎DOI:10.1007/s11301-020-00201-w

‎[26] ‎ Raffik, R., Rakesh, D., Venkatesh, M., & Samvasan, P. (2021). Supply chain control and inventory ‎tracking system using industrial automation tools and iiot. 2021 international conference on ‎advancements in electrical, electronics, communication, computing and automation, ICAECA 2021 ‎‎(pp. 1–5). IEEE. DOI: 10.1109/ICAECA52838.2021.9675774‎

‎[27] ‎ Ananvaithayakij, N., Pannakkong, W., & others. (2022). An automatic warehouse inventory monitoring ‎system based on text extraction using computer vision. ‎https://ethesisarchive.library.tu.ac.th/thesis/2022/TU_2022_6522040481_17643_25893.pdf

‎[28] ‎ Eljaouhari, A., Alhilali, Z., Arif, J., Fellaki, S., Amejwal, M., & Azzouz, K. (2022). Demand Forecasting ‎application with regression and iot based inventory management system: a case study of a ‎semiconductor manufacturing company. International journal of engineering research in africa, 60, 189–210. ‎DOI:10.4028/p-8ntq24‎

‎[29] ‎ Pasupuleti, V., Thuraka, B., Kodete, C. S., & Malisetty, S. (2024). Enhancing supply chain agility and ‎sustainability through machine learning: optimization techniques for logistics and inventory ‎management. Logistics, 8(3), 73. DOI:10.3390/logistics8030073‎

‎[30] ‎ Mashayekhy, Y., Babaei, A., Yuan, X. M., & Xue, A. (2022). Impact of internet of things (IoT) on ‎inventory management: a literature survey. Logistics, 6(2), 33. DOI:10.3390/logistics6020033‎

‎[31] ‎ Macas, C. V. M., Aguirre, J. A. E., Arcentales-Carrión, R., & Peña, M. (2021). Inventory management for ‎retail companies: a literature review and current trends. 2021 second international conference on ‎information systems and software technologies (ici2st) (pp. 71–78). IEEE. 10.1109/ICI2ST51859.2021.00018‎

‎[32] ‎ Kembro, J. H., Danielsson, V., & Smajli, G. (2017). Network video technology: exploring an innovative ‎approach to improving warehouse operations. International journal of physical distribution and logistics ‎management, 47(7), 623–645. DOI:10.1108/IJPDLM-02-2017-0112‎

‎[33] ‎ Albayrak Ünal, Ö., Erkayman, B., & Usanmaz, B. (2023). Applications of artificial intelligence in ‎inventory management: a systematic review of the literature. Archives of computational methods in ‎engineering, 30(4), 2605–2625. DOI:10.1007/s11831-022-09879-5‎

‎[34] ‎ Shojaeinasab, A., Charter, T., Jalayer, M., Khadivi, M., Ogunfowora, O., Raiyani, N., … & Najjaran, H. ‎‎(2022). Intelligent manufacturing execution systems: a systematic review. Journal of manufacturing ‎systems, 62, 503–522. DOI:10.1016/j.jmsy.2022.01.004‎

‎[35] ‎ Tubis, A. A., & Rohman, J. (2023). Intelligent warehouse in Industry 4.0—systematic literature review. ‎Sensors, 23(8), 4105. DOI:10.3390/s23084105‎

‎[36] ‎ Verma, N. K., Goyal, A., Chaman, A., Sevakula, R. K., & Salour, A. (2015). Template matching for ‎inventory management using fuzzy color histogram and spatial filters. 2015 ieee 10th conference on ‎industrial electronics and applications (iciea) (pp. 317–322). IEEE. DOI: 10.1109/ICIEA.2015.7334132‎

‎[37] ‎ Alberto, F. E. (2024). ROI analysis of RFID-based intelligent inventory management systems. Frontiers ‎in management science, 3(3), 52–59. DOI:10.56397/fms.2024.06.07‎

‎[38] ‎ Ren, Z., Fang, F., Yan, N., & Wu, Y. (2022). State of the art in defect detection based on machine vision. ‎International journal of precision engineering and manufacturing-green technology, 9(2), 661–691. ‎DOI:10.1007/s40684-021-00343-6‎

‎[39] ‎ Daios, A., Xanthopoulos, A., Folinas, D., & Kostavelis, I. (2024). Towards automating stocktaking in ‎warehouses: challenges, trends, and reliable approaches. Procedia computer science, 232, 1437–1445. ‎DOI:10.1016/j.procs.2024.01.142‎

‎[40] ‎ Wang, Y., Han, Y., Wang, C., Song, S., Tian, Q., & Huang, G. (2023). Computation-efficient deep ‎learning for computer vision: a survey. Cybernetics and intelligence, 1–24. ‎DOI:10.26599/CAI.2024.9390002‎

‎[41] ‎ Borges Oliveira, D. A., Ribeiro Pereira, L. G., Bresolin, T., Pontes Ferreira, R. E., & Reboucas Dorea, J. ‎R. (2021). A review of deep learning algorithms for computer vision systems in livestock. Livestock ‎science, 253, 104700. DOI:10.1016/j.livsci.2021.104700‎

‎[42] ‎ Cesarelli, G., Scala, A., Vecchione, D., Ponsiglione, A. M., & Guizzi, G. (2021). An innovative business ‎model for a multi-echelon supply chain inventory management pattern. Journal of physics: conference ‎series (Vol. 1828, p. 12082). IOP Publishing. DOI: 10.1088/1742-6596/1828/1/012082‎

‎[43] ‎ Gutierrez, J. C., Polo Triana, S. I., & León Becerra, J. S. (2024). Benefits, challenges, and limitations of ‎inventory control using machine learning algorithms: literature review. Opsearch, 1–33. ‎DOI:10.1007/s12597-024-00839-0‎

‎[44] ‎ Ferreira, B., & Reis, J. (2023). A systematic literature review on the application of automation in ‎logistics. Logistics, 7(4), 80. DOI:10.3390/logistics7040080‎

‎[45] ‎ Damle, A., Bangera, M., Tripathi, S., & Meena, M. (2020). Analysis of barcode scanning and ‎management. SAMRIDDHI: a journal of physical sciences, engineering and technology, 12(SUP 1), 90–95. ‎https://www.smsjournals.com/index.php/SAMRIDDHI/article/view/1911‎

‎[46] ‎ Unhelkar, B., Joshi, S., Sharma, M., Prakash, S., Mani, A. K., & Prasad, M. (2022). Enhancing supply ‎chain performance using RFID technology and decision support systems in the industry 4.0–a ‎systematic literature review. International journal of information management data insights, 2(2), 100084. ‎DOI:10.1016/j.jjimei.2022.100084‎

‎[47] ‎ Balaska, V., Tsiakas, K., Giakoumis, D., Kostavelis, I., Folinas, D., Gasteratos, A., & Tzovaras, D. (2022). ‎A viewpoint on the challenges and solutions for driverless last-mile delivery. Machines, 10(11), 1059. ‎DOI:10.3390/machines10111059‎

‎[48] ‎ Mohammed, K., Elmogy, M., & Tolba, A. S. (2017). Review of educational business intelligence using ‎radio frequency identification technology. International journal of intelligent computing and information ‎science, 17(1).‎

‎[49] ‎ Sharma, P., & Panda, S. (2023). Cloud computing for supply chain management and warehouse ‎automation: a case study of azure cloud. International journal of smart sensor and adhoc network, 3(4), 19–‎‎29.‎

‎[50] ‎ S Pasaribu, J. (2021). Development of a web based inventory information system. International journal of ‎engineering, science and information technology, 1(2), 24–31. DOI:10.52088/ijesty.v1i2.51‎

‎[51] ‎ Raza, S. A. (2022). A systematic literature review of RFID in supply chain management. Journal of ‎enterprise information management, 35(2), 617–649.‎

‎[52] ‎ Nayak, A., Satpathy, I., Khang, A., & Nayak, A. (2024). Role of computer vision (CV) in manufacturing: ‎seeing is believing. In Machine vision and industrial robotics in manufacturing (pp. 129–144). CRC Press. ‎https://www.taylorfrancis.com/chapters/edit/10.1201/9781003438137-7/role-computer-vision-cv-‎manufacturing-ankita-nayak-ipseeta-satpathy-alex-khang-arpita-nayak

‎[53] ‎ Kumar, P., Choubey, D., Amosu, O. R. & Ogunsuji, Y. M. (2024). AI-enhanced inventory and demand ‎forecasting: using AI to optimize inventory management and predict customer demand. World journal ‎of advanced research and reviews, 23(1), 1931–1944.‎

‎[54] ‎ Ikpe, A. E., Ekanem, I. I., & Ohwoekevwo, J. U. (2024). Integration of internet of things in conventional ‎vehicle technology and its synergy with vehicle telematics systems and fleet management sequence. ‎Smart internet of things, 1(1), 31–53.‎

‎[55] ‎ IMOH, I. E. (2024). A technical survey on the role of robotics in conventional manufacturing process: ‎an element of Industry 4.0. FUPRE journal of scientific and industrial research (fjsir), 8(2), 172–192. ‎https://journal.fupre.edu.ng/index.php/fjsir/article/view/282/235‎

‎[56] ‎ Svanberg, M. S. (2023). The economic advantage of computer vision over human labor, and its market ‎implications. https://dspace.mit.edu/handle/1721.1/151816‎

‎[57] ‎ Soleimani, R., Soleimani-Babakamali, M. H., Meng, S., Avci, O., & Taciroglu, E. (2024). Computer ‎vision tools for early post-disaster assessment: enhancing generalizability. Engineering applications of ‎artificial intelligence, 136, 108855. DOI:10.1016/j.engappai.2024.108855‎

‎[58] ‎ Salehzadeh, S. A. S. (2016). The selection and evaluation of a sensory technology for interaction in a warehouse ‎environment. https://core.ac.uk/download/pdf/145031465.pdf

‎[59] ‎ Gill, R., Srivastava, D., Hooda, S., Singla, C., & Chaudhary, R. (2024). Unleashing sustainable ‎efficiency: the integration of computer vision into Industry 4.0. Engineering management journal, 1–19. ‎https://doi.org/10.1080/10429247.2024.2383518‎

‎[60] ‎ Yin, H., Chen, C., Hao, C., & Huang, B. (2022). A Vision-based inventory method for stacked goods in ‎stereoscopic warehouse. Neural computing and applications, 34(23), 20773–20790. DOI:10.1007/s00521-022-‎‎07551-4‎

‎[61] ‎ Patel, A. D., & Chowdhury, A. R. (2020). Vision-based object classification using deep learning for ‎inventory tracking in automated warehouse environment. 2020 20th international conference on control, ‎automation and systems (iccas) (pp. 145–150). IEEE. DOI: 10.23919/ICCAS50221.2020.9268394‎

‎[62] ‎ Eswaran, M., & Bahubalendruni, M. V. A. R. (2022). Challenges and opportunities on AR/VR ‎technologies for manufacturing systems in the context of industry 4.0: A state of the art review. Journal ‎of manufacturing systems, 65, 260–278. DOI:10.1016/j.jmsy.2022.09.016‎

Published

2024-09-02

How to Cite

Conjectures of Computer Vision Technology (CVT) on Industrial Information Management Systems (IMSs): A Futuristic Gaze. (2024). Metaheuristic Algorithms With Applications, 1(1), 20-34. https://maa.reapress.com/journal/article/view/20