Adoption of Multi-Objective Grey Wolf Optimization (MOGWO) for Effective Analysis and Classification of Crystal Structures in Materials Science

Authors

  • Imoh Ime Ekanem * Department of Mechanical Engineering, Akwa Ibom State Polytechnic, Ikot Osurua, Ikot Ekpene, Nigeria.
  • Aniekan Essienubong Ikpe Department of Mechanical Engineering, Akwa Ibom State Polytechnic, Ikot Osurua, Ikot Ekpene, Nigeria.
  • Otobong Okon Ite Department of Mechanical Engineering, University of Uyo, Nigeria.

https://doi.org/10.22105/maa.v2i1.21

Abstract

In the field of materials science, the analysis and classification of crystal structures play a crucial role in understanding the properties and behaviour of materials. Traditional optimization algorithms have limitations in effectively handling the complex and multi-objective nature of this task. Therefore, there is a need for a more advanced and efficient optimization technique to address this challenge. This study focuses on the potential of adopting Multi-Objective Grey Wolf Optimization (MOGWO) for the effective analysis and classification of crystal structures in materials science. The methodology of this review involves a comprehensive analysis of existing literature on the application of MOGWO in materials science, particularly in the context of crystal structure analysis and classification. The review includes a critical evaluation of the strengths and limitations of MOGWO compared to traditional optimization algorithms. Additionally, classification, minimization, and optimization of crystal structures as well as structural stability, electrical properties, inter-atomic distance, lattice parameters, and phase transformation via MOGWO were also examined. The findings revealed that MOGWO offers several advantages over traditional optimization algorithms in the analysis and classification of crystal structures. For example, MOGWO is able to effectively handle the multi-objective nature of material crystal structures, providing more accurate and efficient results. Furthermore, MOGWO has been shown to outperform other optimization techniques in terms of convergence speed, improved accuracy, efficiency, and solution quality. The algorithm can effectively handle the complexity and multi-objective nature of problems in this field, providing more accurate results within the least possible time. This study highlights the potential of MOGWO as a valuable research tool in the field of materials science, offering a more efficient and effective approach that can advance our understanding of crystals.

Keywords:

Grey wolf optimization, Crystal structures, Materials science, Inter-atomic distance

References

  1. [1] Hussain, S., Wahab, F., Usama, M., Arshad, A., Khan, H., & Gul, S. (2024). Materials chemistry: Properties and applications. Chemistry: The modern approach. https://B2n.ir/g09028

  2. [2] Ekanem, I. I., Ikpe, A. E., & Udoh, V. E. (2024). Principles of crystal structures for bravais lattice: a study on symmetry within lattice and diffraction lines in crystallography. Biocompounds, 1(1), 1–23. https://bic.reapress.com/journal/article/view/25

  3. [3] Hatta, N. M., Zain, A. M., Sallehuddin, R., Shayfull, Z., & Yusoff, Y. (2019). Recent studies on optimisation method of Grey Wolf Optimiser (GWO): A review (2014--2017). Artificial intelligence review, 52, 2651–2683. https://doi.org/10.1007/s10462-018-9634-2

  4. [4] Rashed, N. A., Ali, Y. H., & Rashid, T. A. (2024). Advancements in optimization: critical analysis of evolutionary, swarm, and behavior-based algorithms. Algorithms, 17(9), 416. https://doi.org/10.3390/a17090416

  5. [5] Khodadadi, N., Khodadadi, E., Abdollahzadeh, B., EI-Kenawy, E. S. M., Mardanpour, P., Zhao, W., … & Mirjalili, S. (2024). Multi-objective generalized normal distribution optimization: A novel algorithm for multi-objective problems. Cluster computing, 27(8), 10589–10631. https://doi.org/10.1007/s10586-024-04467-7

  6. [6] Torabi, A., Yosefvand, F., Shabanlou, S., Rajabi, A., & Yaghoubi, B. (2024). Optimization of integrated operation of surface and groundwater resources using multi-objective grey wolf optimizer (MOGWO) algorithm. Water resources management, 38(6), 2079–2099. https://doi.org/10.1007/s11269-024-03744-9

  7. [7] Sharifi, M. R., Akbarifard, S., Qaderi, K., & Madadi, M. R. (2021). A new optimization algorithm to solve multi-objective problems. Scientific reports, 11(1), 20326. https://doi.org/10.1038/s41598-021-99617-x

  8. [8] Yu, M., Xu, J., Liang, W., Qiu, Y., Bao, S., & Tang, L. (2024). Improved multi-strategy adaptive Grey Wolf Optimization for practical engineering applications and high-dimensional problem solving. Artificial intelligence review, 57(10), 277. https://doi.org/10.1007/s10462-024-10821-3

  9. [9] Sharma, R., Pal, A., Mittal, N., Kumar, L., Van, S., Nam, Y., & Abouhawwash, M. (2024). MOALG: A metaheuristic hybrid of multi-objective ant lion optimizer and genetic algorithm for solving design problems. Computers, materials & continua, 78(3), 3489-3510. https://doi.org/10.32604/cmc.2024.046606

  10. [10] Salgotra, R., Singh, U., & Sharma, S. (2020). On the improvement in grey wolf optimization. Neural computing and applications, 32, 3709–3748. https://doi.org/10.1007/s00521-019-04456-7

  11. [11] Wang, Z., & Rangaiah, G. P. (2017). Application and analysis of methods for selecting an optimal solution from the Pareto-optimal front obtained by multiobjective optimization. Industrial & engineering chemistry research, 56(2), 560–574. https://doi.org/10.1021/acs.iecr.6b03453

  12. [12] Petchrompo, S., Coit, D. W., Brintrup, A., Wannakrairot, A., & Parlikad, A. K. (2022). A review of pareto pruning methods for multi-objective optimization. Computers & industrial engineering, 167, 108022. https://doi.org/10.1016/j.cie.2022.108022

  13. [13] Oganov, A. R., Pickard, C. J., Zhu, Q., & Needs, R. J. (2019). Structure prediction drives materials discovery. Nature reviews materials, 4(5), 331–348. https://doi.org/10.1038/s41578-019-0101-8

  14. [14] Suman, B., & Kumar, P. (2006). A survey of simulated annealing as a tool for single and multiobjective optimization. Journal of the operational research society, 57(10), 1143–1160. https://doi.org/10.1057/palgrave.jors.2602068

  15. [15] Choudhary, K., DeCost, B., Chen, C., Jain, A., Tavazza, F., & Cohn, R. (2022). Recent advances and applications of deep learning methods in materials science. NPJ computational materials, 8(1), 59. https://doi.org/10.1038/s41524-022-00734-6

  16. [16] Parois, P., Cooper, R. I., & Thompson, A. L. (2015). Crystal structures of increasingly large molecules: meeting the challenges with crystals software. Chemistry central journal, 9, 1–14. https://doi.org/10.1186/s13065-015-0105-4

  17. [17] Ikpe, A. E., Ekanem, I. I. & Ikpe, E. O. (2024). A review of deep learning algorithm in real-time performance of intelligent industrial machines. 6th EFES international scientific research and innovation congress (pp. 153-167). https://B2n.ir/q43943

  18. [18] Marzari, N., Ferretti, A., & Wolverton, C. (2021). Electronic-structure methods for materials design. Nature materials, 20(6), 736–749. https://doi.org/10.1038/s41563-021-01013-3

  19. [19] Müller, U., & De La Flor, G. (2024). Symmetry relationships between crystal structures: Applications of crystallographic group theory in crystal chemistry (Vol. 24). Oxford University Press. https://B2n.ir/n50874

  20. [20] Perez, N. (2024). Atomic structure. in materials science: Theory and engineering. Springer Nature. https://B2n.ir/m46266

  21. [21] Dada, E., Joseph, S., Oyewola, D., Fadele, A. A., Chiroma, H., & others. (2022). Application of grey wolf optimization algorithm: recent trends, issues, and possible horizons. Gazi university journal of science, 35(2), 485–504. https://doi.org/10.35378/gujs.820885

  22. [22] Faris, H., Aljarah, I., Al-Betar, M. A., & Mirjalili, S. (2018). Grey wolf optimizer: A review of recent variants and applications. Neural computing and applications, 30, 413–435. https://doi.org/10.1007/s00521-017-3272-5

  23. [23] Snášel, V., Rizk-Allah, R. M., & Hassanien, A. E. (2023). Guided golden jackal optimization using elite-opposition strategy for efficient design of multi-objective engineering problems. Neural computing and applications, 35(28), 20771–20802. https://doi.org/10.1007/s00521-023-08850-0

  24. [24] Hussien, A. G., Bouaouda, A., Alzaqebah, A., Kumar, S., Hu, G., & Jia, H. (2024). An in-depth survey of the artificial gorilla troops optimizer: outcomes, variations, and applications. Artificial intelligence review, 57(9), 246. https://doi.org/10.1007/s10462-024-10838-8

  25. [25] Verma, A. S., & Singh, S. (2022). Multi-objective parametric optimization during wedm of silicon through MOGWO. In Advances in modern machining processes: Proceedings of aimtdr 2021 (pp. 215–226). Springer. https://doi.org/10.1007/978-981-19-7150-1_18

  26. [26] Nallolla, C. A., P, V., Chittathuru, D., & Padmanaban, S. (2023). Multi-objective optimization algorithms for a hybrid AC/DC microgrid using RES: A comprehensive review. Electronics, 12(4), 1062. https://doi.org/10.3390/electronics12041062

  27. [27] Mosavi, S. K., Jalalian, E., & Gharahchopog, F. S. (2018). A comprehensive survey of grey wolf optimizer algorithm and its application. International journal of advance robotics & expert systems (JARES), 1(6), 23–45. https://www.academia.edu/download/73138459/1620jares03.pdf

  28. [28] Liu, Y., As’ arry, A., Hassan, M. K., Hairuddin, A. A., & Mohamad, H. (2024). Review of the grey wolf optimization algorithm: Variants and applications. Neural computing and applications, 36(6), 2713–2735. https://doi.org/10.1007/s00521-023-09202-8

  29. [29] Mirjalili, S., Saremi, S., Mirjalili, S. M., & Coelho, L. dos S. (2016). Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert systems with applications, 47, 106–119. https://doi.org/10.1016/j.eswa.2015.10.039

  30. [30] Xue, P., Zhu, L., Xu, P., Ren, Y., Xin, B., Meng, G., … & Liu, Z. (2021). Research on process optimization and microstructure of CrCoNi medium-entropy alloy formed by laser metal deposition. Optics & laser technology, 142, 107167. https://doi.org/10.1016/j.optlastec.2021.107167

  31. [31] Makhadmeh, S. N., Alomari, O. A., Mirjalili, S., Al-Betar, M. A., & Elnagar, A. (2022). Recent advances in multi-objective grey wolf optimizer, its versions and applications. Neural computing and applications, 34(22), 19723–19749. https://doi.org/10.1007/s00521-022-07704-5

  32. [32] Okokpujie, I. P., & Tartibu, L. K. (2023). Multi-objective grey wolf optimizer for improved machining performance. In Modern optimization techniques for advanced machining: heuristic and metaheuristic techniques (pp. 91–106). Springer. https://doi.org/10.1007/978-3-031-35455-7_5

  33. [33] Liu, J., Liu, Z., Wu, Y., & Li, K. (2024). MBB-MOGWO: modified boltzmann-based multi-objective grey wolf optimizer. Sensors, 24(5), 1502. https://doi.org/10.3390/s24051502

  34. [34] Yue, L., Hu, P., Chu, S. C., & Pan, J. S. (2023). Multi-objective gray wolf optimizer with cost-sensitive feature selection for predicting students’ academic performance in college English. Mathematics, 11(15), 3396. https://doi.org/10.3390/math11153396

  35. [35] Neshat, M., Sergiienko, N. Y., Nezhad, M. M., da Silva, L. S. P., Amini, E., Marsooli, R., … & Mirjalili, S. (2024). Enhancing the performance of hybrid wave-wind energy systems through a fast and adaptive chaotic multi-objective swarm optimisation method. Applied energy, 362, 122955. https://doi.org/10.1016/j.apenergy.2024.122955

  36. [36] Zhai, W., Bai, L., Zhou, R., Fan, X., Kang, G., Liu, Y., & Zhou, K. (2021). Recent progress on wear-resistant materials: Designs, properties, and applications. Advanced science, 8(11), 2003739. https://doi.org/10.1002/advs.202003739

  37. [37] Awad, W. M., Davies, D. W., Kitagawa, D., Halabi, J. M., Al-Handawi, M. B., & Tahir, I. (2023). Mechanical properties and peculiarities of molecular crystals. Chemical society reviews, 52(9), 3098–3169. https://doi.org/10.1039/D2CS00481J

  38. [38] Yang, W., Meyers, M. A., & Ritchie, R. O. (2019). Structural architectures with toughening mechanisms in Nature: A review of the materials science of Type-I collagenous materials. Progress in materials science, 103, 425–483. https://doi.org/10.1016/j.pmatsci.2019.01.002

  39. [39] Meng, Z., Yıldız, B. S., Li, G., Zhong, C., Mirjalili, S., & Yildiz, A. R. (2023). Application of state-of-the-art multiobjective metaheuristic algorithms in reliability-based design optimization: a comparative study. Structural and multidisciplinary optimization, 66(8), 1-191. https://doi.org/10.1007/s00158-023-03639-0

  40. [40] Liu, Y., Kumar, A., Fan, Z., Zhang, Y., Ke, Q., Zeng, K., … & Ong, K. P. (2013). Ferroelectricity and dipole-dipole interactions in NH4TiOF3 mesocrystals. Applied physics letters, 102(23). https://doi.org/10.1063/1.4809946

  41. [41] Li, Q., Yao, F.-Z., Liu, Y., Zhang, G., Wang, H., & Wang, Q. (2018). High-temperature dielectric materials for electrical energy storage. Annual review of materials research, 48(1), 219–243. https://doi.org/10.1146/annurev-matsci-070317-124435

  42. [42] Adegboye, O. R., Feda, A. K., Ojekemi, O. S., Agyekum, E. B., Hussien, A. G., & Kamel, S. (2024). Chaotic opposition learning with mirror reflection and worst individual disturbance grey wolf optimizer for continuous global numerical optimization. Scientific reports, 14(1), 4660. https://doi.org/10.1038/s41598-024-55040-6

  43. [43] Abubakar, A., Borkor, R. N., & Amoako-Yirenkyi, P. (2024). Stochastic optimal harmonic suppression with permissible photovoltaic penetration level for grid-linked systems using Monte Carlo-based hybrid NSGA2-MOPSO. Energy systems, 1–35. https://doi.org/10.1007/s12667-024-00700-9

  44. [44] Sahoo, S. K., Saha, A. K., Houssein, E. H., Premkumar, M., Reang, S., & Emam, M. M. (2024). An arithmetic and geometric mean-based multi-objective moth-flame optimization algorithm. Cluster computing, 27(5), 6527–6561. https://doi.org/10.1007/s10586-024-04301-0

  45. [45] Ma, X., Du, H., Lan, P., Chen, J., & Lan, L. (2022). Effect of point defects on electronic properties and structure of talc (001) surface by first principles. Minerals, 12(1), 69. https://doi.org/10.3390/min12010069

  46. [46] Ekanem, I. I., Ikpe, A. E. and Ohwoekevwo, J. U. (2024). A systematic review of the trends in ceramic materials and its viability in industrial applications. Journal of material characterization and applications, 2(2), 63–78. https://doi.org/10.5281/zenodo.13729830

  47. [47] Sandoval-Perez, A., Becerra, D., Vanegas, D., Restrepo-Montoya, D., & Nino, F. (2013). A multi-objective optimization energy approach to predict the ligand conformation in a docking process. Genetic Programming: 16th european conference, EuroGP 2013, Vienna, Austria, proceedings 16 (pp. 181-192). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-37207-0_16

  48. [48] Musil, F., Grisafi, A., Bartók, A. P., Ortner, C., Csányi, G., & Ceriotti, M. (2021). Physics-inspired structural representations for molecules and materials. Chemical reviews, 121(16), 9759–9815. https://doi.org/10.1021/acs.chemrev.1c00021

  49. [49] Abdullah, N. R., Azeez, Y. H., Tang, C. S., & Gudmundsson, V. (2024). High thermal conductivity of orthorhombic BC2N semiconductor: DFT study of electronic, phonon, AIMD, and optical properties. Diamond and related materials, 148, 111455. https://doi.org/10.1016/j.diamond.2024.111455

  50. [50] Shevchenko, A. P., Shabalin, A. A., Karpukhin, I. Y., & Blatov, V. A. (2022). Topological representations of crystal structures: generation, analysis and implementation in the TopCryst system. Science and technology of advanced materials: methods, 2(1), 250–265. https://doi.org/10.1080/27660400.2022.2088041

  51. [51] Parlinski, K. (2005). Lattice dynamics: Vibrational modes. In Materials science and materials engineering (pp. 98–102). Elsevier. https://doi.org/10.1016/B0-12-369401-9/00509-X

  52. [52] Safdari, M. J., Mirjalili, S. M., Bianucci, P., & Zhang, X. (2018). Multi-objective optimization framework for designing photonic crystal sensors. Applied optics, 57(8), 1950–1957. https://doi.org/10.1364/AO.57.001950

  53. [53] Talatahari, S., Azizi, M., Tolouei, M., Talatahari, B., & Sareh, P. (2021). Crystal structure algorithm (CryStAl): a metaheuristic optimization method. IEEE access, 9, 71244–71261. https://doi.org/10.1109/ACCESS.2021.3079161

  54. [54] Lu, C., Gao, L., & Yi, J. (2018). Grey wolf optimizer with cellular topological structure. Expert systems with applications, 107, 89–114. https://doi.org/10.1016/j.eswa.2018.04.012

  55. [55] Nadimi-Shahraki, M. H., Moeini, E., Taghian, S., & Mirjalili, S. (2023). Discrete improved grey wolf optimizer for community detection. Journal of bionic engineering, 20(5), 2331–2358. https://doi.org/10.1007/s42235-023-00387-1

  56. [56] Kumar, A. (2024). Swap operator-based grey wolf optimiser for materialised view selection problem. International journal of bio-inspired computation, 24(1), 1–11. https://doi.org/10.1504/IJBIC.2024.140111

  57. [57] Almufti, S. M., Ahmad, H. B., Marqas, R. B., & Asaad, R. R. (2021). Grey wolf optimizer: Overview, modifications and applications. International research journal of science, technology, education, and management, 1(1), 1. https://doi.org/10.5281/zenodo.5195644

  58. [58] Negi, G., Kumar, A., Pant, S., & Ram, M. (2021). GWO: a review and applications. International journal of system assurance engineering and management, 12, 1–8. https://doi.org/10.1007/s13198-020-00995-8

  59. [59] Al-Tashi, Q., Shami, T. M., Abdulkadir, S. J., Akhir, E. A. P., Alwadain, A., & Alhussain, H. (2023). Enhanced multi-objective grey wolf optimizer with lévy flight and mutation operators for feature selection. Computer system science engineering, 47(2), 1937–1966. https://doi.org/10.32604/csse.2023.039788

  60. [60] Li, W., Qian, X., & Li, J. (2021). Phase transitions in 2D materials. Nature reviews materials, 6(9), 829–846. https://doi.org/10.1038/s41578-021-00304-0

  61. [61] Vojta, M. (2003). Quantum phase transitions. Reports on progress in physics, 66(12), 2069. https://doi.org/10.1088/0034-4885/66/12/R01

  62. [62] Shi, C., Han, X.-B., & Zhang, W. (2019). Structural phase transition-associated dielectric transition and ferroelectricity in coordination compounds. Coordination chemistry reviews, 378, 561–576. https://doi.org/10.1016/j.ccr.2017.09.020

  63. [63] Duerloo, K.-A. N., Li, Y., & Reed, E. J. (2014). Structural phase transitions in two-dimensional Mo-and W-dichalcogenide monolayers. Nature communications, 5(1), 4214. https://doi.org/10.1038/ncomms5214

  64. [64] Vainshtein, B. K. (2013). Fundamentals of crystals: symmetry, and methods of structural crystallography (Vol. 1). Springer Science & Business Media.

  65. [65] Nouhi, B., Khodadadi, N., Azizi, M., Talatahari, S., & Gandomi, A. H. (2022). Multi-objective material generation algorithm (MOMGA) for optimization purposes. IEEe access, 10, 107095–107115. https://ieeexplore.ieee.org/abstract/document/9908549

  66. [66] Butler, K. T., Frost, J. M., Skelton, J. M., Svane, K. L., & Walsh, A. (2016). Computational materials design of crystalline solids. Chemical society reviews, 45(22), 6138–6146. https://doi.org/10.1039/C5CS00841G

  67. [67] Ziletti, A., Kumar, D., Scheffler, M., & Ghiringhelli, L. M. (2018). Insightful classification of crystal structures using deep learning. Nature communications, 9(1), 2775. https://www.nature.com/articles/s41467-018-05169-6

  68. [68] Epp, J. (2016). X-ray diffraction (XRD) techniques for materials characterization. In Materials characterization using nondestructive evaluation (NDE) methods (pp. 81-124). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100040-3.00004-3

  69. [69] Burns, G. Glazer, A. M. (2013). Point symmetry operations. Space groups for solid state scientists (3th Edition). Academic Press.

  70. [70] Afrasyabi, P., Mesgari, M. S., El-sayed, M., Kaveh, M., Ibrahim, A., & Khodadadi, N. (2023). A crossover-based multi-objective discrete particle swarm optimization model for solving multi-modal routing problems. Decision analytics journal, 9, 100356. https://doi.org/10.1016/j.dajour.2023.100356

  71. [71] Yang, Y., Yang, B., Wang, S., Jin, T., & Li, S. (2020). An enhanced multi-objective grey wolf optimizer for service composition in cloud manufacturing. Applied soft computing, 87, 106003. https://doi.org/10.1016/j.asoc.2019.106003

  72. [72] Mahdavi, M. H., & Ramezanian, R. (2023). Optimizing two-echelon mobile supply chains: modeling and algorithms for the mobile facility routing and production scheduling problem. https://irantypist.com/media/new_research/samplefile/1689788348_4457.pdf

  73. [73] Meng, X. (2024). Integrating chaotic evolutionary and local search techniques in decision space for enhanced evolutionary multi-objective optimization. https://doi.org/10.48550/arXiv.2411.07860

Published

2025-03-12

How to Cite

Ekanem, I., Ikpe, A., & Ite, O. (2025). Adoption of Multi-Objective Grey Wolf Optimization (MOGWO) for Effective Analysis and Classification of Crystal Structures in Materials Science. Metaheuristic Algorithms With Applications, 2(1), 1-35. https://doi.org/10.22105/maa.v2i1.21