A Review of Usage Metaheuristic Algorithms in Brain-Computer Interface

Authors

https://doi.org/10.48313/maa.v2i2.29

Abstract

Brain–Computer Interface (BCI) systems translate neural activity into machine-interpretable commands, enabling direct communication between the brain and external devices. However, Electroencephalography (EEG) and  Functional Near-Infrared Spectroscopy (FNIRS) signals used in BCIs are inherently noisy, nonstationary, and high-dimensional, making manual feature engineering and model tuning highly inefficient. Metaheuristic optimization algorithms bio-inspired approaches that simulate natural or social behaviors have emerged as powerful tools for automating these processes. This review provides a comprehensive overview of how metaheuristics such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), Ant Colony Optimization (ACO), and Grey Wolf Optimizer (GWO) have been applied in EEG and FNIRS-based BCIs for channel selection, feature extraction, and classifier tuning. It also discusses the rise of hybrid EEG–FNIRS systems and the integration of metaheuristics with deep learning, Reinforcement Learning (RL), and transfer learning frameworks to enhance adaptability and cross-session generalization. A dedicated case study highlights the Trees Social Relationship (TSR) algorithm a novel ecology-inspired metaheuristic that balances cooperation and competition among solutions. TSR demonstrates strong potential for feature selection, neural network optimization, and adaptive BCI calibration, outperforming traditional algorithms in convergence speed and stability. Collectively, the review identifies key trends from 2020 to 2025, including hybrid and multi-objective metaheuristics, real-time adaptation, and explainable optimization frameworks. The study concludes that metaheuristics are not merely auxiliary tools but foundational elements in building intelligent, robust, and self-adaptive BCI systems capable of real-world operation.

Keywords:

Brain–computer interface, Electroencephalography, Functional near-infrared spectroscopy, Metaheuristic optimization, Feature selection

References

  1. [1] Khademi, Z., Ebrahimi, F., & Kordy, H. M. (2023). A review of critical challenges in MI-BCI: from conventional to deep learning methods. Journal of neuroscience methods, 383, 109736. https://doi.org/10.1016/j.jneumeth.2022.109736

  2. [2] Reyes-García, C. A., Torres-García, A. A., Hernández-del-Toro, T., García-Salinas, J. S., & Villaseñor-Pineda, L. (2025). Decoding imagined speech for EEG-based BCI. In El-Baz, A. S. & Suri, J. S. (Eds.), Brain-computer interfaces (pp. 151–175). Academic Press. https://doi.org/10.1016/B978-0-323-95439-6.00004-1

  3. [3] Altaheri, H., Muhammad, G., Alsulaiman, M., Amin, S. U., Altuwaijri, G. A., Abdul, W., … & Faisal, M. (2023). Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review. Neural computing and applications, 35(20), 14681–14722. https://doi.org/10.1007/s00521-021-06352-5

  4. [4] Gao, Z., & Wang, X. (2019). Deep Learning. In Hu, L. & Zhang, Z. (Eds.), EEG signal processing and feature extraction (pp. 325–333). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-9113-2_16

  5. [5] Nicolas-Alonso, L. F., & Gomez-Gil, J. (2012). Brain Computer Interfaces, a Review. Sensors, 12(2), 1211–1279. https://doi.org/10.3390/s120201211

  6. [6] Santhanam, G., Ryu, S. I., Yu, B. M., Afshar, A., & Shenoy, K. V. (2006). A high-performance brain–computer interface. Nature, 442(7099), 195–198. https://doi.org/10.1038/nature04968

  7. [7] Pires, G., Cruz, A., Jesus, D., Yasemin, M., Nunes, U. J., Sousa, T., & Castelo-Branco, M. (2022). A new error-monitoring brain--computer interface based on reinforcement learning for people with autism spectrum disorders. Journal of neural engineering, 19(6), 66032. https://doi.org/10.1088/1741-2552/aca798

  8. [8] Bhuvaneshwari, M., Kanaga, E. G. M., Anitha, J., Raimond, K., & George, S. T. (2021). A comprehensive review on deep learning techniques for a BCI-based communication system. In Demystifying big data, machine learning, and deep learning for healthcare analytics (pp. 131–157). Academic Press. https://doi.org/10.1016/B978-0-12-821633-0.00013-1

  9. [9] Tremmel, C., Fernandez-Vargas, J., Stamos, D., Cinel, C., Pontil, M., Citi, L., & Poli, R. (2022). A meta-learning BCI for estimating decision confidence. Journal of neural engineering, 19(4), 46009. https://doi.org/10.1088/1741-2552/ac7ba8

  10. [10] Friehs, G. M., Zerris, V. A., Ojakangas, C. L., Fellows, M. R., & Donoghue, J. P. (2004). Brain–machine and brain–computer interfaces. Stroke, 35(11 Suppl 1), 2702–2705. https://doi.org/10.1161/01.STR.0000143235.93497.03

  11. [11] Hu, L., & Zhang, Z. (2019). EEG signal processing and feature extraction. Springer. https://doi.org/10.1007/978-981-13-9113-2

  12. [12] Alzahab, N. A., Apollonio, L., Di Iorio, A., Alshalak, M., Iarlori, S., Ferracuti, F., … & Porcaro, C. (2021). Hybrid deep learning (hDL)-based brain-computer interface (BCI) systems: a systematic review. Brain sciences, 11(1), 75. https://doi.org/10.3390/brainsci11010075

  13. [13] Thompson, D. E., Quitadamo, L. R., Mainardi, L., Gao, S., Kindermans, P. J., Simeral, J. D. (2014). Performance measurement for brain--computer or brain--machine interfaces: a tutorial. Journal of neural engineering, 11(3), 35001. https://doi.org/10.1088/1741-2560/11/3/035001

  14. [14] Wierzgała, P., Zapała, D., Wojcik, G. M., & Masiak, J. (2018). Most popular signal processing methods in motor-imagery BCI: a review and meta-analysis. Frontiers in neuroinformatics, 12, 78. https://doi.org/10.3389/fninf.2018.00078

  15. [15] Zhang, Z. (2019). Spectral and Time-Frequency Analysis. In Hu, L. & Zhang, Z. (Eds.), EEG signal processing and feature extraction (pp. 89–116). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-9113-2_6

  16. [16] Zhang, L., Zhou, Y., Gong, P., & Zhang, D. (2024). Speech imagery decoding using EEG signals and deep learning: A survey. IEEE transactions on cognitive and developmental systems, 17(1), 22–39. https://doi.org/10.1109/TCDS.2024.3431224

  17. [17] Rao, Z., Zhang, R., He, S., Zhou, Y., Lu, Z., Li, K., & Li, Y. (2024). A once-calibration brain-computer interface to enhance convenience for continuous BCI interventions in stroke patients. IEEE sensors journal, 25(2), 3949–3963. https://doi.org/10.1109/JSEN.2024.3510059

  18. [18] Gao, Z., Yuan, T., Zhou, X., Ma, C., Ma, K., & Hui, P. (2020). A deep learning method for improving the classification accuracy of SSMVEP-based BCI. IEEE transactions on circuits and systems ii: express briefs, 67(12), 3447–3451. https://doi.org/10.1109/TCSII.2020.2983389

  19. [19] Alimoradi, M., Azgomi, H., & Asghari, A. (2022). Trees social relations optimization algorithm: a new swarm-based metaheuristic technique to solve continuous and discrete optimization problems. Mathematics and computers in simulation, 194, 629–664. https://doi.org/10.1016/j.matcom.2021.12.010

  20. [20] Rahman, N., Khan, D. M., Masroor, K., Arshad, M., Rafiq, A., & Fahim, S. M. (2024). Advances in brain-computer interface for decoding speech imagery from EEG signals: a systematic review. Cognitive neurodynamics, 18(6), 3565–3583. https://doi.org/10.1007/s11571-024-10167-0

  21. [21] Daliri, A., Asghari, A., Azgomi, H., & Alimoradi, M. (2022). The water optimization algorithm: a novel metaheuristic for solving optimization problems. Applied intelligence, 52(15), 17990–18029. https://doi.org/10.1007/s10489-022-03397-4

Published

2025-06-15

How to Cite

Parandavar, Z. . (2025). A Review of Usage Metaheuristic Algorithms in Brain-Computer Interface. Metaheuristic Algorithms With Applications, 2(2), 112-133. https://doi.org/10.48313/maa.v2i2.29

Similar Articles

You may also start an advanced similarity search for this article.